Abstract-In this paper we aim at increasing the descriptive power of the covariance matrix, limited in capturing linear mutual dependencies between variables only. We present a rigorous and principled mathematical pipeline to recover the kernel trick for computing the covariance matrix, enhancing it to model more complex, non-linear relationships conveyed by the raw data. To this end, we propose Kernelized-COV, which generalizes the original covariance representation without compromising the efficiency of the computation. In the experiments, we validate the proposed framework against many previous approaches in the literature, scoring on par or superior with respect to the state of the art on benchmark datasets for 3D action recognition.Publicly available code: https://www.iit.it/pavis/code/kcar
The increasing presence of robots in society necessitates a deeper understanding into what attitudes people have toward robots. People may treat robots as mechanistic artifacts or may consider them to be intentional agents. This might result in explaining robots’ behavior as stemming from operations of the mind (intentional interpretation) or as a result of mechanistic design (mechanistic interpretation). Here, we examined whether individual attitudes toward robots can be differentiated on the basis of default neural activity pattern during resting state, measured with electroencephalogram (EEG). Participants observed scenarios in which a humanoid robot was depicted performing various actions embedded in daily contexts. Before they were introduced to the task, we measured their resting state EEG activity. We found that resting state EEG beta activity differentiated people who were later inclined toward interpreting robot behaviors as either mechanistic or intentional. This pattern is similar to the pattern of activity in the default mode network, which was previously demonstrated to have a social role. In addition, gamma activity observed when participants were making decisions about a robot’s behavior indicates a relationship between theory of mind and said attitudes. Thus, we provide evidence that individual biases toward treating robots as either intentional agents or mechanistic artifacts can be detected at the neural level, already in a resting state EEG signal.
Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability discourages over-specific co-adaptations of feature detectors, preventing overfitting and improving network generalization. Besides, Dropout can be interpreted as an approximate model aggregation technique, where an exponential number of smaller networks are averaged in order to get a more powerful ensemble. In this paper, we show that using a fixed dropout probability during training is a suboptimal choice. We thus propose a time scheduling for the probability of retaining neurons in the network. This induces an adaptive regularization scheme that smoothly increases the difficulty of the optimization problem. This idea of "starting easy" and adaptively increasing the difficulty of the learning problem has its roots in curriculum learning and allows one to train better models. Indeed, we prove that our optimization strategy implements a very general curriculum scheme, by gradually adding noise to both the input and intermediate feature representations within the network architecture. Experiments on seven image classification datasets and different network architectures show that our method, named Curriculum Dropout, frequently yields to better generalization and, at worst, performs just as well as the standard Dropout method.
Abstract. 3D action recognition was shown to benefit from a covariance representation of the input data (joint 3D positions). A kernel machine feed with such feature is an effective paradigm for 3D action recognition, yielding state-of-the-art results. Yet, the whole framework is affected by the well-known scalability issue. In fact, in general, the kernel function has to be evaluated for all pairs of instances inducing a Gram matrix whose complexity is quadratic in the number of samples. In this work we reduce such complexity to be linear by proposing a novel and explicit feature map to approximate the kernel function. This allows to train a linear classifier with an explicit feature encoding, which implicitly implements a Log-Euclidean machine in a scalable fashion. Not only we prove that the proposed approximation is unbiased, but also we work out an explicit strong bound for its variance, attesting a theoretical superiority of our approach with respect to existing ones. Experimentally, we verify that our representation provides a compact encoding and outperforms other approximation schemes on a number of publicly available benchmark datasets for 3D action recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.