Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was approximately 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was ف 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.
4-Coumarate:coenzyme A ligase (4CL) activates hydroxycinnamates for entry into phenylpropanoid branchways that support various metabolic activities, including lignification and flavonoid biosynthesis. However, it is not clear whether and how 4CL proteins with their broad substrate specificities fulfill the specific hydroxycinnamate requirements of the branchways they supply. Two tissue-specific 4CLs, Pt4CL1 and Pt4CL2, have previously been cloned from quaking aspen (Populus tremuloides Michx.), but whether they are catalytically adapted for the distinctive metabolic roles they are thought to support is not apparent from published biochemical data. Therefore, single-and mixed-substrate assays were conducted to determine whether the 4CLs from aspen exhibit clear catalytic identities under certain metabolic circumstances. Recombinant Pt4CL1 and Pt4CL2 exhibited the expected preference for p-coumarate in single-substrate assays, but strong competitive inhibition favored utilization of caffeate and p-coumarate, respectively, in mixed-substrate assays. The Pt4CL1 product, caffeoyl-CoA, predominated in mixed-substrate assays with xylem extract, and this was consistent with the near absence of Pt4CL2 expression in xylem tissue as determined by in situ hybridization. It is interesting that the Pt4CL2 product p-coumaroyl-CoA predominated in assays with developing leaf extract, although in situ hybridization revealed that both genes were coexpressed. The xylem extract and recombinant 4CL1 data allow us to advance a mechanism by which 4CL1 can selectively utilize caffeate for the support of monolignol biosynthesis in maturing xylem and phloem fibers. Loblolly pine (Pinus taeda), in contrast, possesses a single 4CL protein exhibiting broad substrate specificity in mixed-substrate assays. We discuss these 4CL differences in terms of the contrasts in lignification between angiosperm trees and their gymnosperm progenitors. 4-Coumarate:coenzyme A (CoA) ligase (4CL) mediates activation of hydroxycinnamic acids 4-(p)-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA), 5-hydroxyferulic acid (5HFA), and sinapic acid (SA) into the high-energy intermediates used for biosynthesis of lignin, flavonoids, and various other protective, attractant, and signaling metabolites (Hahlbrock and Scheel, 1989; Dixon and Paiva, 1995;Higuchi, 1997;Whetten et al., 1998). Multiple 4CL isoforms with differential in vitro substrate specificities have been reported in several species (Knobloch and Hahlbrock, 1975;Ehlting et al., 1999), including aspen (Populus tremuloides Michx.; Hu et al., 1998), and these isoforms have been proposed to control the relative abundance of flavonoids and various lignin precursors (monolignols) during structural, protective, and reproductive development (Ranjeva et al., 1976;Knobloch and Hahlbrock, 1977;Grand et al., 1983). Wounding, UV light, and elicitors increase transcript abundance of different 4CL isoforms (Uhlmann and Ebel, 1993;Ehlting et al., 1999), reinforcing the model that there are distinct associations be...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.