Natural melanins are biocompatible conductors with versatile functionalities. Here, we report fabrication of multifunctional poly(vinyl alcohol)/melanin nanocomposites by layer-by-layer (LBL) assembly using melanin nanoparticles (MNPs) directly extracted from sepia officinalis inks. The LBL assembly offers facile manipulation of nanotextures as well as nm-thickness control of the macroscale film by varying solvent qualities. The time-resolved absorption was monitored during the process and quantitatively studied by fractal dimension and lacunarity analysis. The capability of nanoarchitecturing provides confirmation of complete monolayer formation and leads to tunable iridescent reflective colors of the MNP films. In addition, the MNP films have durable electrochemical conductivities as evidenced by enhanced charge storage capacities for 1000 cycles. Moreover, the MNP covered ITO (indium tin oxide) substrates significantly reduced secretion of inflammatory cytokines, TNF-α, by raw 264.7 macrophage cells compared to bare ITO, by a factor of 5 and 1.8 with and without lipopolysaccharide endotoxins, respectively. These results highlight the optoelectronic device-level tunability along with the anti-inflammatory biocompatibility of the MNP LBL film. This combination of performance should make these films particularly interesting for bioelectronic device applications such as electroceuticals, artificial bionic organs, biosensors, and implantable devices.
The development of electronic devices from naturally derived materials is of enormous scientific interest. Melanin, a dark protective pigment ubiquitous in living creatures, may be particularly valuable because of its ability to conduct charges both electronically and ionically. However, device applications are severely hindered by its relatively poor electrical properties. Here, the facile preparation of conductive melanin composites is reported in which melanin nanoparticles (MNPs), directly extracted from squid inks, form electrically continuous junctions by tight clustering in a poly(vinyl alcohol) (PVA) matrix. Prepared as freestanding films and patterned microstructures by a series of precipitation, dry casting, and post‐thermal annealing steps, the percolated composites show electrical conductivities as high as 1.17 ± 0.13 S cm−1 at room temperature, which is the best performance yet obtained with biologically‐derived nanoparticles. Furthermore, the biodegradability of the MNP/PVA composites is confirmed through appetitive ingestion by Zophobas morios larvae (superworms). This discovery for preparing versatile biocomposites suggests new opportunities in functional material selections for the emerging applications of implantable, edible, green bioelectronics.
Cellulose nanofibrils are nano-scale materials with a diameter of several tens of nanometers. Cellulose nanofibrils' excellent mechanical and barrier properties make them attractive materials in the packaging industry. The morphology and crystallinity of obtained nano-cellulose greatly depend on the raw materials and the nano-fibrilization process. In this study, we investigated the effect of morphology and crystal structure of cellulose nanofibrils on coating performance, transparency, and barrier properties. Cellulose nanofibrils with a narrow diameter, high crystallinity and negative ion were fabricated as the concentration of the sulfuric acid was increased. As a result, post-treated cellulose nanofibrils could be easily coated due to narrow diameter and introduction of negative ion, and enhance oxygen barrier properties via the densely interconnected nanofiber surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.