Objective This research aims to evaluate the impact of eligibility criteria on recruitment and observable clinical outcomes of COVID-19 clinical trials using electronic health record (EHR) data. Materials and Methods On June 18, 2020, we identified frequently used eligibility criteria from all the interventional COVID-19 trials in ClinicalTrials.gov (n = 288), including age, pregnancy, oxygen saturation, alanine/aspartate aminotransferase, platelets, and estimated glomerular filtration rate. We applied the frequently used criteria to the EHR data of COVID-19 patients in Columbia University Irving Medical Center (CUIMC) (March 2020–June 2020) and evaluated their impact on patient accrual and the occurrence of a composite endpoint of mechanical ventilation, tracheostomy, and in-hospital death. Results There were 3251 patients diagnosed with COVID-19 from the CUIMC EHR included in the analysis. The median follow-up period was 10 days (interquartile range 4–28 days). The composite events occurred in 18.1% (n = 587) of the COVID-19 cohort during the follow-up. In a hypothetical trial with common eligibility criteria, 33.6% (690/2051) were eligible among patients with evaluable data and 22.2% (153/690) had the composite event. Discussion By adjusting the thresholds of common eligibility criteria based on the characteristics of COVID-19 patients, we could observe more composite events from fewer patients. Conclusions This research demonstrated the potential of using the EHR data of COVID-19 patients to inform the selection of eligibility criteria and their thresholds, supporting data-driven optimization of participant selection towards improved statistical power of COVID-19 trials.
Many machine learning techniques provide a simple prediction for drug-drug interactions (DDIs). However, a systematically constructed database with pharmacokinetic (PK) DDI information does not exist, nor is there a machine learning model that numerically predicts PK fold change (FC) with it. Therefore, we propose a PK DDI prediction (PK-DDIP) model for quantitative DDI prediction with high accuracy, while constructing a highly reliable PK-DDI database. Reliable information of 3,627 PK DDIs was constructed from 3,587 drugs using 38,711 Food and Drug Administration (FDA) drug labels. This PK-DDIP model predicted the FC of the area under the time-concentration curve (AUC) within ± 0.5959. The prediction proportions within 0.8–1.25-fold, 0.67–1.5-fold, and 0.5–2-fold of the AUC were 75.77, 86.68, and 94.76%, respectively. Two external validations confirmed good prediction performance for newly updated FDA labels and FC from patients’. This model enables potential DDI evaluation before clinical trials, which will save time and cost.
Clinical trials are the gold standard for generating reliable medical evidence. The biggest bottleneck in clinical trials is recruitment. To facilitate recruitment, tools for patient search of relevant clinical trials have been developed, but users often suffer from information overload. With nearly 700 coronavirus disease 2019 (COVID-19) trials conducted in the United States as of August 2020, it is imperative to enable rapid recruitment to these studies. The COVID-19 Trial Finder was designed to facilitate patient-centered search of COVID-19 trials, first by location and radius distance from trial sites, and then by brief, dynamically generated medical questions to allow users to prescreen their eligibility for nearby COVID-19 trials with minimum human computer interaction. A simulation study using 20 publicly available patient case reports demonstrates its precision and effectiveness.
BACKGROUND Garlic-related misinformation is prevalent whenever a virus outbreak occurs. Again, with the outbreak of coronavirus disease 2019 (COVID-19), garlic-related misinformation is spreading through social media sites, including Twitter. Machine learning-based approaches can be used to detect misinformation from vast tweets. OBJECTIVE This study aimed to develop machine learning algorithms for detecting misinformation on garlic and COVID-19 in Twitter. METHODS This study used 5,929 original tweets mentioning garlic and COVID-19. Tweets were manually labeled as misinformation, accurate information, and others. We tested the following algorithms: k-nearest neighbors; random forest; support vector machine (SVM) with linear, radial, and polynomial kernels; and neural network. Features for machine learning included user-based features (verified account, user type, number of followers, and follower rate) and text-based features (uniform resource locator, negation, sentiment score, Latent Dirichlet Allocation topic probability, number of retweets, and number of favorites). A model with the highest accuracy in the training dataset (70% of overall dataset) was tested using a test dataset (30% of overall dataset). Predictive performance was measured using overall accuracy, sensitivity, specificity, and balanced accuracy. RESULTS SVM with the polynomial kernel model showed the highest accuracy of 0.670. The model also showed a balanced accuracy of 0.757, sensitivity of 0.819, and specificity of 0.696 for misinformation. Important features in the misinformation and accurate information classes included topic 4 (common myths), topic 13 (garlic-specific myths), number of followers, topic 11 (misinformation on social media), and follower rate. Topic 3 (cooking recipes) was the most important feature in the others class. CONCLUSIONS Our SVM model showed good performance in detecting misinformation. The results of our study will help detect misinformation related to garlic and COVID-19. It could also be applied to prevent misinformation related to dietary supplements in the event of a future outbreak of a disease other than COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.