Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation).
SummaryWe studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy proteincoding genes from 293 operational taxonomic units (OTUs).The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene.Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.
Desertification is currently a major concern, and vast regions have already been devastated in the arid zones of many countries. Combined application of cyanobacteria with soil fixing chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcangeli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7), which consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition, superabsorbent polymer (SAP) was applied to the soil as a water-holding material and nutrient supplement. Application of cyanobacteria with superabsorbent polymer and TKS7 (CST) remarkably improved macro-aggregate stability against water and erodibility against wind after 12 months of inoculation when compared to the control soil. The mean weight diameter and threshold friction velocity of the CST treated soil were found to be 75% and 88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC), respectively, while these values were 68% and 73% of those of the N-BSC soil after a single treatment of cyanobacteria alone (CY). Interestingly, biological activities of CST were similar to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass, soil respiration, carbon fixation and effective quantum yield of CST treated soil were enhanced by 50–100% of the N-BSC, while those of control soil were negligible. Our results suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly develop cyanobacterial crust formation in the field within 12 months. The physical properties and biological activities of the inoculated cyanobacterial crust were stable during the study period. The novel method presented herein serves as another approach for combating desertification in arid regions.
Lichens are symbiotic organisms which produce distinct secondary metabolic products. In the present study, we tested the cytotoxic activity of 17 lichen species against several human cancer cells and further investigated the molecular mechanisms underlying their anti-cancer activity. We found that among 17 lichens species, F. cucullata exhibited the most potent cytotoxicity in several human cancer cells. High performance liquid chromatography analysis revealed that the acetone extract of F. cucullata contains usnic acid, salazinic acid, Squamatic acid, Baeomycesic acid, d-protolichesterinic acid, and lichesterinic acid as subcomponents. MTT assay showed that cancer cell lines were more vulnerable to the cytotoxic effects of the extract than non-cancer cell lines. Furthermore, among the identified subcomponents, usnic acid treatment had a similar cytotoxic effect on cancer cell lines but with lower potency than the extract. At a lethal dose, treatment with the extract or with usnic acid greatly increased the apoptotic cell population and specifically activated the apoptotic signaling pathway; however, using sub-lethal doses, extract and usnic acid treatment decreased cancer cell motility and inhibited in vitro and in vivo tumorigenic potentials. In these cells, we observed significantly reduced levels of epithelial-mesenchymal transition (EMT) markers and phosphor-Akt, while phosphor-c-Jun and phosphor-ERK1/2 levels were only marginally affected. Overall, the anti-cancer activity of the extract is more potent than that of usnic acid alone. Taken together, F. cucullata and its subcomponent, usnic acid together with additional component, exert anti-cancer effects on human cancer cells through the induction of apoptosis and the inhibition of EMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.