Despite the technological advances in automated driving systems, traffic accidents involving automated vehicles (AVs) continue to occur, raising concerns over the safety and reliability of automated driving. For the smooth commercialization of AVs, it is necessary to systematically assess the driving safety of AVs under the various situations that they potentially face. In this context, these various situations are mostly implemented by using systematically developed scenarios. In accordance with this need, a scenario generation framework for the assessment of the driving safety of AVs is proposed by this study. The proposed framework provides a unified form of assessment with key components for each scenario stage to facilitate systematization and objectivity. The performance of the driving safety assessment scenarios generated within the proposed framework was verified. Traffic accident report data were used for verification, and the usefulness of the proposed framework was confirmed by generating a set of scenarios, ranging from functional scenarios to test cases. The scenario generation framework proposed in this study can be used to provide sustainable scenarios. In addition, from this, it is possible to create assessment scenarios for all road types and various assessment spaces, such as simulations, proving grounds, and real roads.
Background
Recognition is an essential function of human beings. Humans easily recognize a person using various inputs such as voice, face, or gesture. In this study, we mainly focus on DL model with multi-modality which has many benefits including noise reduction. We used ResNet-50 for extracting features from dataset with 2D data.
Results
This study proposes a novel multimodal and multitask model, which can both identify human ID and classify the gender in single step. At the feature level, the extracted features are concatenated as the input for the identification module. Additionally, in our model design, we can change the number of modalities used in a single model. To demonstrate our model, we generate 58 virtual subjects with public ECG, face and fingerprint dataset. Through the test with noisy input, using multimodal is more robust and better than using single modality.
Conclusions
This paper presents an end-to-end approach for multimodal and multitask learning. The proposed model shows robustness on the spoof attack, which can be significant for bio-authentication device. Through results in this study, we suggest a new perspective for human identification task, which performs better than in previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.