People make decisions based on deviations from expected outcomes, known as prediction errors. Past work has focused on reward prediction errors, largely ignoring violations of expected emotional experiences—emotion prediction errors. We leverage a method to measure real-time fluctuations in emotion as people decide to punish or forgive others. Across four studies (N=1,016), we reveal that emotion and reward prediction errors have distinguishable contributions to choice, such that emotion prediction errors exert the strongest impact during decision-making. We additionally find that a choice to punish or forgive can be decoded in less than a second from an evolving emotional response, suggesting emotions swiftly influence choice. Finally, individuals reporting significant levels of depression exhibit selective impairments in using emotion—but not reward—prediction errors. Evidence for emotion prediction errors potently guiding social behaviors challenge standard decision-making models that have focused solely on reward.
In order to navigate a complex web of relationships, an individual must learn and represent the connections between people in a social network. However, the sheer size and complexity of the social world makes it impossible to acquire firsthand knowledge of all relations within a network, suggesting that people must make inferences about unobserved relationships to fill in the gaps. Across three studies (n = 328), we show that people can encode information about social features (e.g., hobbies, clubs) and subsequently deploy this knowledge to infer the existence of unobserved friendships in the network. Using computational models, we test various feature-based mechanisms that could support such inferences. We find that people’s ability to successfully generalize depends on two representational strategies: a simple but inflexible similarity heuristic that leverages homophily, and a complex but flexible cognitive map that encodes the statistical relationships between social features and friendships. Together, our studies reveal that people can build cognitive maps encoding arbitrary patterns of latent relations in many abstract feature spaces, allowing social networks to be represented in a flexible format. Moreover, these findings shed light on open questions across disciplines about how people learn and represent social networks and may have implications for generating more human-like link prediction in machine learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.