1 Andrographolide, the major active component from Andrographis paniculata, has shown to possess anti-inflammatory activity. Andrographolide inhibits the expression of several proinflammatory proteins that exhibit a nuclear factor kappa B (NF-kB) binding site in their gene. 2 In the present study, we analyzed the effect of andrographolide on the activation of NF-kB induced by platelet-activating factor (PAF) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) in HL-60 cells differentiated to neutrophils. 3 PAF (100 nM) and fMLP (100 nM) induced activation of NF-kB as determined by degradation of inhibitory factor B a (IkBa) using Western blotting in cytosolic extracts and by binding to DNA using electrophoretic mobility shift assay (EMSA) in nuclear extracts. 4 Andrographolide (5 and 50 mM) inhibited the NF-kB-luciferase activity induced by PAF. However, andrographolide did not reduce phosphorylation of p38 MAPK or ERK1/2 and did not change IkBa degradation induced by PAF and fMLP. 5 Andrographolide reduced the DNA binding of NF-kB in whole cells and in nuclear extracts induced by PAF and fMLP. 6 Andrographolide reduced cyclooxygenase-2 (COX-2) expression induced by PAF and fMLP in HL-60/neutrophils. 7 It is concluded that andrographolide exerts its anti-inflammatory effects by inhibiting NF-kB binding to DNA, and thus reducing the expression of proinflammatory proteins, such as COX-2.
Kinins are biologically active peptides that are powerful mediators of cellular inflammation. They mimic the cardinal signs of inflammation by inducing vasodilatation and by increasing vascular permeability and pain. Neutrophils are chemoattracted to sites of inflammation by several stimuli. However, the evidence concerning the chemotactic effect of kinin peptides has been contradictory. We analyzed the chemotactic effect of kinin B(1) receptor agonists on neutrophils isolated from peripheral blood of human healthy subjects. Chemotaxis was performed using the migration under agarose technique. To test the effect of B(1) receptor agonists, each assay was carried out overnight at 37 degrees C in 5% CO(2)-95% air on neutrophils primed with 1 ng/ml interleukin-1beta. Simultaneous experiments were performed using unprimed cells or cells challenged with formyl-Met-Leu-Phe (fMLP). A clear chemotactic activity was observed when primed neutrophils were challenged with Lys-des[Arg(9)]-bradykinin (LDBK) or des[Arg(9)]-bradykinin at 10(-10) M but not when unprimed cells were used. A reduction in the chemotactic response was observed after priming of cells in the presence of 0.5 mM cycloheximide and 10 mug/ml brefeldin A, suggesting that some protein biosynthesis is required. Techniques such as reverse transcriptase-polymerase chain reaction and in situ hybridization confirmed the expression of the B(1) receptor mRNA, and immunocytochemistry and autoradiography demonstrated the expression of the B(1) receptor protein. In contrast to other chemoattractants such as fMLP, cytosolic intracellular calcium did not increase in response to the B(1) receptor agonist LDBK. A generation of kinin B(1) receptor agonists during the early phase of acute inflammation may favor the recruitment of neutrophils to the inflammatory site.
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.