Hass avocado quality varies by origin, season, and production practices. However, there is a lack of methodologies to guarantee that fruit reaching the market has consistent quality. The aim of this work was to identify predictive markers for quality management. Fruit samples produced under different nutrient management, elevation, date-to-harvest, and growth cycle conditions were analyzed. Dry matter, oil content, internal disorders, sensory attributes, minerals, and fatty acids were evaluated as quality variables. The results highlighted soil and weather differences among orchards. Nutrient management practices based on index balancing in some samples increased both productivity and fruit size. High variability was observed in the dry matter related to the age of the fruit at harvest. Ripening heterogeneity was very large in low-elevation orchards where the fruit was picked relatively early. High flesh mineral contents delayed fruit ripening. At low growing temperatures, more oleic and linoleic acids were present in fruits. The sensory texture and taste descriptors were affected by the fruit age and related to the flesh composition. Logistic, PLS-DA, and biplot models effectively represented the variabilities in the ripening pattern, composition, and sensory profile of avocado fruits and allowed the samples to be grouped according to the internal fruit quality.
There is immense variability in the postharvest quality of Hass avocados. However, there is a lack of knowledge to guaranteeing the robustness of fruit with consistent quality. The aims of this work were to develop a multivariate methodology for evaluating the postharvest quality of avocado and to determine predictive quality markers to manage fruit quality. Fruit samples produced under different nutrient management, elevation, date-to-harvest, and growing-cycle conditions were analyzed. The results highlighted soil and weather differences among orchards. Nutrient management practices based on index balancing in some samples increased both productivity and the fruit size. High variability was observed in the dry matter related to the age of the fruit at harvest. Ripening heterogeneity was very large in low-elevation orchards where the fruit was picked relatively early. High flesh mineral contents delayed fruit ripening. At low growing temperatures, more oleic and linoleic acids were present in fruits. The sensory texture and taste descriptors were affected by the fruit age and related to the flesh composition. Logistic, PLS-DA, and biplot models effectively represented the variabilities in the ripening pattern, composition, and sensory profile of avocado fruits and allowed the samples to be grouped according to the internal fruit quality.
Knowing, with reasonable accuracy, the dry matter (DM) content of Hass avocado fruit will help determine when the fruit must be harvested. The reliability of predictive models based on near infrared spectra for DM quantification depends on the ability of the spectra to be representative of the DM gradient within a whole fruit. The aim of this work was to develop a methodology to determine the optimum number of spectra to develop a robust model for DM content quantification. Three spectra were recorded for each zone of the intact fruit: peduncle, equator, and base. Each scanning point was sampled, and the DM content was determined using oven drying. Two-way ANOVA confirmed the DM gradient within the whole fruit. This gradient was observed within spectra using the RMS (root mean square) criterion and PCA. The PLS models showed that at least one spectrum per zone could be enough to construct an efficient and robust model for dry matter quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.