Abstract-We found that interactive services at Bing have highly variable datacenter-side processing latencies because their processing consists of many sequential stages, parallelization across 10s-1000s of servers and aggregation of responses across the network. To improve the tail latency of such services, we use a few building blocks: reissuing laggards elsewhere in the cluster, new policies to return incomplete results and speeding up laggards by giving them more resources. Combining these building blocks to reduce the overall latency is non-trivial because for the same amount of resource (e.g., number of reissues), different stages improve their latency by different amounts. We present Kwiken, a framework that takes an end-to-end view of latency improvements and costs. It decomposes the problem of minimizing latency over a general processing DAG into a manageable optimization over individual stages. Through simulations with production traces, we show sizable gains; the 99 th percentile of latency improves by over 50% when just 0.1% of the responses are allowed to have partial results and by over 40% for 25% of the services when just 5% extra resources are used for reissues.
To reduce the impact of network congestion on big data jobs, cluster management frameworks use various heuristics to schedule compute tasks and/or network flows. Most of these schedulers consider the job input data fixed and greedily schedule the tasks and flows that are ready to run. However, a large fraction of production jobs are recurring with predictable characteristics, which allows us to plan ahead for them. Coordinating the placement of data and tasks of these jobs allows for significantly improving their network locality and freeing up bandwidth, which can be used by other jobs running on the cluster. With this intuition, we develop Corral, a scheduling framework that uses characteristics of future workloads to determine an offline schedule which (i) jointly places data and compute to achieve better data locality, and (ii) isolates jobs both spatially (by scheduling them in different parts of the cluster) and temporally, improving their performance. We implement Corral on Apache Yarn, and evaluate it on a 210 machine cluster using production workloads. Compared to Yarn's capacity scheduler, Corral reduces the makespan of these workloads up to 33% and the median completion time up to 56%, with 20-90% reduction in data transferred across racks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.