Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.
A complementary DNA encoding the D100 polypeptide of rat brain dynamin--a force-producing, microtubule-activated nucleotide triphosphatase--has been cloned and sequenced. The predicted amino acid sequence includes a guanine nucleotide-binding domain that is homologous with those of a family of antiviral factors, inducible by interferon and known as Mx proteins, and with the product of the essential yeast vacuolar protein sorting gene VPS1. These relationships imply the existence of a new family of GTPases with physiological roles that may include microtubule-based motility and protein sorting.
Cytoplasmic dynein is a microtubule-activated ATPase which produces force towards the minus ends of microtubules. It is thought to be responsible for retrograde axonal transport and other aspects of organelle motility and may have a role in the poleward movement of mitotic chromosomes. Cytoplasmic dynein is an oligomeric complex of two catalytic heavy chains and a number of accessory subunits. We now report the cloning and sequencing of a complementary DNA for one of these species, a cytoplasmic dynein-associated polypeptide of relative molecular mass 150,000 (Mr 150K). A full-length cDNA was found to contain an open reading frame of 4.0 kilobases, which is predicted to encode a polypeptide of Mr 145K. It has extensive homology with the product of the Drosophila gene Glued, which encodes a polypeptide of Mr 148K. The Glued mutation is dominant, with pleiotropic developmental defects in heterozygotes and an embryonic lethal phenotype in homozygotes. As dominant mutations may involve disruption of normal protein-protein interactions, the Glued mutation should provide insight into the mode of action of cytoplasmic dynein in vivo.
Microtubules play an important role in establishing cellular architecture. Neuronal microtubules are considered to have a role in dendrite and axon formation.
Neurite outgrowth is guided by narrow pathways of bioactive laminin. These pathways are created by ultraviolet light irradiation of laminin-coated coverslips masked with electron microscope grids. Patterned outgrowth of neurites is independent of gross mechanical guidance and guidance caused by substrate limitation. Cells on unirradiated laminin are less readily displaced by shear forces than cells on irradiated laminin. This study suggests that ultraviolet light alters the adhesive properties of laminin and that differential cell-substratum adhesion may guide extending neurites on the purified naturally occurring substance, laminin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.