[1] Site test interferometers (STIs) have been deployed at two locations within the NASA Deep Space Network tracking complex in Goldstone, California. An STI measures the difference of atmospheric delay fluctuations over a distance comparable to the separations of microwave antennas that could be combined as phased arrays for communication and navigation. The purpose of the Goldstone STIs is to assess the suitability of Goldstone as an uplink array site and to statistically characterize atmosphere-induced phase delay fluctuations for application to future arrays. Each instrument consists of two~1 m diameter antennas and associated electronics separated by~200 m. The antennas continuously observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. The two locations at Goldstone are separated by 12.5 km and differ in elevation by 119 m. We find that their delay fluctuations are statistically similar but do not appear as shifted versions of each other, suggesting that the length scale for evolution of the turbulence pattern is shorter than the separation between instruments. We also find that the fluctuations are slightly weaker at the higher altitude site.
-This paper reports the development and characterization of a novel switching device for use in microwave systems. The device utilizes a switching mechanism based on nanoionics, in which mobile ions within a solid electrolyte undergo an electrochemical process to form and remove a conductive metallic "bridge" to define the change of state.The nanoionics-based switch has demonstrated an insertion loss of ~0.5dB, isolation of >30dB, low voltage operation (1V), low power (~μW) and low energy (~nJ) consumption, and excellent linearity up to 6 GHz. The switch requires fewer bias operations (due to non-volatile nature) and has a simple planar geometry allowing for novel device structures and easy integration into microwave power distribution circuits.
Site of StudyTo characterize atmospheric propagation effects at Ka-band (20 GHz) and Q-band (40 GHz), a dual Ka/Q-band beacon receiver was deployed to Milan, Italy in a collaboration between NASA Glenn Research Center and the Politecnico di Milano, utilizing the beacons onboard the Alphasat satellite (launched July 2013).
NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) #5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.