World population is projected to reach its maximum (~10 billion people) by the year 2050. This 45% increase of the current world population (approaching seven billion people) will boost the demand for food and raw materials. However, we live in a historical moment when supply of phosphate, water, and oil are at their peaks. Modern agriculture is fundamentally based on varieties bred for high performance under high input systems (fertilizers, water, oil, pesticides), which generally do not perform well under low-input situations. We propose a shift of research goals and plant breeding objectives from high-performance agriculture at high-energy input to those with an improved rationalization between yield and energy input. Crop breeding programs that are more focused on nutrient economy and local environmental fitness will help reduce energy demands for crop production while still providing adequate amounts of high quality food as global resources decline and population is projected to increase.
Several endophytic fungi of the genus Neotyphodium form symbiotic associations with Lolium spp. grasses and are renowned for production of bioactive alkaloids such as ergot alkaloids. Some of these endophytes make their grass partners less suitable as hosts for endoparasitic nematodes, including Pratylenchus spp. The potential for ergot alkaloids to affect nematode motility was investigated in vitro. Ergovaline, the ergot alkaloid pathway end product of several Neotyphodium spp., was the only ergot alkaloid tested that inhibited motility of Pratylenchus scribneri. The association of ergot alkaloids with nematode population suppression was examined in glasshouse experiments with strains of the perennial ryegrass endophyte Neotyphodium sp. isolate Lp1 (syn. Neotyphodium lolii × Epichloë typhina) that have been genetically modified to lack ergot alkaloids or to have an altered ergot alkaloid profile. Populations of P. scribneri were significantly smaller in pots of perennial ryegrass containing the wild-type, ergot alkaloid-producing endophyte than in pots of endophyte-free perennial ryegrass. Elimination of certain complex ergot alkaloids (ergovaline and lysergic acid amides) in one gene knockout strain, or complete elimination of ergot alkaloids in another, did not affect the ability of the endophyte to suppress populations of nematode. Presence and concentrations of ergot alkaloids in pseudostems were as expected based on presence and genotype of endophyte in each plant, but frequently were undetectable or in low concentration in roots. The data indicate that ergot alkaloids do not contribute significantly to the endophyte-associated suppression of Pratylenchus spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.