Aim: The major focus of this research was to explain the so-called terroir effects that impact grapevine yield components, berry composition, and wine varietal character. To elucidate potential contributors to the terroir effect, vine water status [midday leaf water potential (ψ)] was chosen as a major determinant. The hypothesis of this component of the study was that consistent leaf ψ zones could be identified within vineyard sites and that vine water status would play a major role in vine performance and yield components. Soil texture was anticipated to play a role indirectly through its water-holding capacity.Methods and materials: To test this hypothesis, ten Riesling vineyards representative of each Vintners Quality Alliance of Ontario sub-appellation were selected within the Niagara Peninsula. These vineyards were delineated using global positioning systems and 75–80 sentinel vines were geo-referenced within a sampling grid for data collection. During the 2005–2007 growing seasons, leaf ψ measurements were collected bi-weekly from a subset of these sentinel vines. Data were collected on soil texture and composition, soil water content (SWC), vine performance and yield components. These variables were mapped using geographical information systems software and relationships between them were elucidated.Results: Vineyards were variable in terms of soil texture, composition, nutrition, and moisture. However, in general, few consistent relationships with soil composition variables were found. As hypothesized, consistent leaf ψ zones were identified within vineyards in all three vintages. Some geospatial patterns and relationships were spatially and temporally stable within vineyards. In many cases, spatial distribution of leaf ψ was temporally stable within vineyards despite different weather conditions during each growing season. Spatial trends within vineyards for SWC and leaf ψ were temporally stable over the 3-year period for eight vineyards. Generally, spatial relationships between leaf ψ, SWC, vine size, berry weight and yield were also temporally stable. Some inconsistencies in spatial distribution of variables were attributable to winter injury.Conclusions: Many viticultural variables such as leaf ψ, vine size, berry weight, and yield were spatially variable and, as hypothesized, consistent leaf ψ zones were identified within vineyards in three distinct vintages. Many geospatial patterns and relationships were determined and were temporally stable, and this temporal stability in these variables occurred despite different growing seasons. The strongest relationships were those concerning leaf ψ, SWC, vine size, and berry weight. No consistent relationships were found concerning soil composition. The most consistent soil variables that impacted vine performance and yield components were physical properties, particularly texture.Significance and impact of the study: Soil had some indirect effects, but leaf ψ was more likely a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and yield in many vineyards across multiple vintages. Temporal stability is required for many practical geomatic applications to be initiated in vineyards, but it is also of importance to future research endeavors for this project as well as others.
Temporal check‐all‐that‐apply (TCATA) has been used to characterize wines on a nonspecific basis using a range of attributes to investigate sensory differences between wines. The aim of this study was to ascertain whether TCATA, when focused on specific modalities, could distinguish red wines made from the same grape variety, according to mouthfeel and texture descriptors only. Two trained panels evaluated three wines, made from three grape varieties. A combined training approach that used tactile touch standards together with wine sensory evaluation was used to identify mouthfeel and texture sensations. Panelists identified four sensations relevant to all wines: grippy, fine, coarse, and astringent. Differences between wines produced from the same varieties were found for Pinot noir and Cabernet franc but not Cabernet sauvignon. Our results indicate that TCATA is a reliable technique to discriminate red wines according to their mouthfeel and texture profiles during consumption. Practical applications This study investigated the ability of the temporal check‐all‐that‐apply (TCATA) sensory method to distinguish between red wines made from the same grape variety based on mouthfeel and texture properties only. Results from the present work show that TCATA could be used to identify differences in monovarietal wines made from different winemaking techniques.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.