In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM−1 cm−2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-015-0835-1) contains supplementary material, which is available to authorized users.
In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM −1 cm −2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.
Reducing health disparities has become a national priority, 1-3 especially during the COVID-19 vaccine rollout. On December 14, 2020, the first Americans received a COVID-19 vaccine outside the ongoing clinical trials. As the supply of vaccines was limited at first, the Centers for Disease Control Prevention (CDC) Advisory Committee in Immunization Practices (ACIP) recommended that initial supplies of COVID-19 vaccine be allocated to health care personnel and long-term care facility residents, followed by frontline essential workers and people aged 75 years and older. 4 Among their 3 main goals for whom should be offered COVID-19 vaccines, the first was to reduce the extra burden COVID-19 has on people already facing disparities.Research has consistently shown that the COVID-19 pandemic is disproportionally affecting those who are in already disadvantaged situations or groups. 5,6 Early data from the COVID-19 pandemic showed that Black and Latino populations in the United States were 3 times more likely to contract COVID-19 than White residents and nearly twice as likely to die from it. 7 This is reflected in initial barriers to vaccine access. 8 Early reports also show disparities in vaccination rates: Black Americans were receiving
BACKGROUND:
Care at verified trauma centers has improved survival and functional outcomes, yet determining the appropriate location of potential trauma centers is often driven by factors other than optimizing system-level patient care. Given the importance of transport time in trauma, we analyzed trauma transport patterns in a rural state lacking an organized trauma system and implemented a geographic information system to inform potential future trauma center locations.
STUDY DESIGN:
Data were collected on trauma ground transport during a 3-year period (2014 through 2016) from the Statewide Incident Reporting Network database. Geographic information system mapping and location-allocation modeling of the best-fit facility for trauma center verification was computed using trauma transport patterns, population density, road network layout, and 60-minute emergency medical services transport time based on current transport protocols.
RESULTS:
Location-allocation modeling identified 2 regional facilities positioned to become the next verified trauma centers. The proportion of the Vermont population without access to trauma center care within 60 minutes would be reduced from the current 29.68% to 5.81% if the identified facilities become verified centers.
CONCLUSIONS:
Through geospatial mapping and location-allocation modeling, we were able to identify gaps and suggest optimal trauma center locations to maximize population coverage in a rural state lacking a formal, organized trauma system. These findings could inform future decision-making for targeted capacity improvement and system design that emphasizes more equitable access to trauma center care in Vermont.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.