The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale.
Manufacturing companies face the challenge of selecting digitalization measures that fit their strategy. Measures that are initiated and not aligned with the company's strategy carry the risk of failing due to lack of relevance. This leads to an ineffective use of scarce human and financial resources. This paper presents a target system to help companies select relevant digitalization measures compliant with their strategy for IT-OT-integration projects. The target system was developed based on literature research and expert interviews, and later validated in two use cases. The target system considers the goals of production companies and combines them with digitalization measures. The measures are classified by different maturity levels required for their realization. Thus, the target system enables manufacturing companies to evaluate digitalization measures with regards to their strategic relevance and the required Industrie 4.0 maturity level for their realization. This ensures an effective use of resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.