A group of 490 persons (244 HIV patients and 246 blood donors) aged 18-55 years were examined using the anti-HEV IgG assay (Wantai Biological Pharmacy Enterprise, Beijing, China). An analysis of the association between certain factors and the presence of this HEV exposure marker was conducted in both groups.Results: An HEV seropositivity rate of 50.2% was found. There was no difference in HEV seroprevalence between blood donors (49.6%, 122/246) and HIV patients (50.8%, 124/244) (p = 0.569). The anti-HEV IgG positivity rate increased with age as follows: 36.2% (59/163) in persons aged 18-30 years, 52.0% (92/177) in individuals aged 31-40 years and 63.3% (95/150) in those aged 41-55 years. HEV infection occurred in 56.4% (31/55) of people who had never travelled abroad. Conclusions: Wielkopolska Region in west-central Poland is an area hyperendemic for HEV infection. In this part of Poland, the exposure of HIV-positive persons to this virus is not greater than that of healthy blood donors.
Innate immunity appears to play an important role in the pathogenesis of viral hepatitis C. Among various cell subsets of this immunity natural killer (NK) cells raised particular interest. These cells are abundant in liver, possess significant cytotoxic potential and show links with adaptive immunity. They play important role, particularly in the acute phase of viral infections, including hepatitis C. They exhibit various types of receptors, either inhibitory or activating, that are able to react with distinct ligands on infected cells. Homozygosity of some receptors, namely KIR2DL3 reacting with recipient HLA-C1 antigens is a herald of good prognosis in hepatitis C virus (HCV) infection. In the early stage of the latter, both the prevalence and the cytotoxicity of NK cells are increased. Their inhibitory receptors are down regulated whereas activating ones are up regulated. Interferon-γ secreted by NK56(+bright) NK cells has a direct cytotoxic effect on infected hepatocytes. In contrast, in the chronic phase of HCV liver disease both, the prevalence and function of NK cells are impaired. Nevertheless, their cytotoxicity contributes to liver injury. Cells show change in the polarization profile from NK1 to NK2, manifested by secretion of immunosuppressive cytokines. Some HCV peptides are inhibitory for NK cells leading to the reduction of their antiviral activity. The unwanted effects of HCV peptides can be at least partly reversed by the antiviral therapy.
Titanium-10 wt % 45S5 Bioglass nanocomposites and their scaffolds were prepared by mechanical alloying (MA) followed by pressing, sintering, or combination of MA and a "space-holder" sintering process, respectively. An amorphous structure was obtained at 15 h of milling. The crystallization of the amorphous phase upon annealing led to the formation of a nanostructured Ti-10 wt % 45S5 Bioglass composite with a grain size of approximately 7 nm. The in vitro cytocompatibility of these materials was evaluated and compared with a conventional microcrystalline titanium. During the studies, established cell line of human fibroblasts CCD-39Lu was cultured in the presence of tested materials and its survival rate, and proliferation activity were examined. Furthermore, the influence of the Ti-45S5 Bioglass nanocomposites and microcrystalline titanium was tested on the growth of Candida albicans yeast. Biocompatibility tests carried out indicate that the nanocomposite Ti-10 wt % 45S5 Bioglass scaffolds could be a possible candidate for dental implants and other medicinal applications.
Macrophages are among the infiltrate components of most malignant tumors. Tumor-associated macrophages (TAMs) may secrete a variety of humoral factors, which promote or inhibit tumor growth. In general, depending on their activation pathway, macrophages exhibit two different patterns of phenotype, M1 or M2. It is assumed that TAMs comprise pattern M2. In the malignant pleural effusion, macrophages are a frequent component of cytological evaluation. In this microenvironment, TAMs could be involved in the development of immunity. The phenotype of macrophages represented in malignant and non-malignant pleural effusions is unknown. In this study, macrophages were isolated from 38 pleural effusions (15 malignant and 23 non-malignant) and the expression of a variety of immune mediators and their receptors was assessed to determine the type of activation (M1 vs. M2). The expression of mRNA was analyzed for IL-1β, IL-4, IL-6, IL-10, IL-11, IL-18, TNFα, TGFβ1, IL1R1, IL1RAP, TLR2, TLR4, VLA4, CD62L, MMP2, MMP9, VEGFA, PDGFA, and PDGFB. In immunohistochemical evaluation, the expressions of CD68, mesothelin, MAC387, IL-1β, IL-6, IL-10, IL-12, TNFα, and CD105 were assessed. The cytoplasmic expression of IFNγ, TNFα, IL-6, and IL-10 and the surface expression of CD11a, CD14, CD15, CD16, CD23, CD25, CD45, CD54, CD62L, CD69, VLA2, VLA3, VLA4, VLA6, TLR2, TLR4, and CCR7 were tested using flow cytometry. In supernatants from macrophages cultures, TNFα, IL-1β, IL-6, IL-8, IL-10, IL-12, MCP1, and VEGF were investigated by cytometric beads array method (CBA flex sets) and TGFβ1 by ELISA. Our results indicate that macrophages from malignant and non-malignant pleural effusions differ from each other and suggest that macrophages isolated from non-malignant effusions show a pattern comparable to M1 while those isolated from malignant effusions express similarity to M2 phenotype, but they have not shown a classical M2 pattern.
Lung cancer is the leading cause of cancer-related mortality worldwide. Diagnosis of lung cancer in an early stage is still a challenge due to the asymptomatic course of early stages of the disease and the lack of a standard screening program for the population. Nowadays, learning about the mechanisms that lead to cancerogenesis in the lung is crucial for the development of new diagnostic and therapeutic strategies. Recently, many studies have proved that cancer stem cells (CSCs) are responsible for the initiation, progression, metastasis, recurrence, and even resistance of chemo- and radiotherapeutic treatment in patients with lung cancer. The expression of pluripotency transcription factors is responsible for stemness properties. In this review, we summarize the current knowledge on the role of CSCs and pluripotency transcription factors in lung carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.