We present a comprehensive study of graphene grown by chemical vapor deposition on copper single crystals with exposed (100), (110) and (111) faces. Direct examination of the as-grown graphene by Raman spectroscopy using a range of visible excitation energies and microRaman mapping shows distinct strain and doping levels for individual Cu surfaces. Comparison of results from Raman mapping with X-ray diffraction techniques and Atomic Force Microscopy shows it is neither the crystal quality nor the surface topography responsible for the specific strain and doping values, but it is the Cu lattice orientation itself. We also report an exceptionally narrow Raman 2D band width caused by the interaction between graphene and metallic substrate. The appearance of this extremely narrow 2D band with full-width-at-half maximum (FWHM) as low as 16 cm -1 is correlated with flat and undoped regions on the Cu(100) and (110) surfaces.The generally compressed (~ 0.3% of strain) and n-doped (Fermi level shift of ~250 meV) graphene on Cu (111) shows the 2D band FWHM minimum of ~20 cm -1 . In contrast, graphene grown on Cu foil under the same conditions reflects the heterogeneity of the polycrystalline surface and its 2D band is accordingly broader with FWHM > 24 cm -1 .
Controlled wrinkling of single-layer graphene (1-LG) at nanometer scale was achieved by introducing monodisperse nanoparticles (NPs), with size comparable to the strain coherence length, underneath the 1-LG. Typical fingerprint of the delaminated fraction is identified as substantial contribution to the principal Raman modes of the 1-LG (G and G’). Correlation analysis of the Raman shift of the G and G’ modes clearly resolved the 1-LG in contact and delaminated from the substrate, respectively. Intensity of Raman features of the delaminated 1-LG increases linearly with the amount of the wrinkles, as determined by advanced processing of atomic force microscopy data. Our study thus offers universal approach for both fine tuning and facile quantification of the graphene topography up to ~60% of wrinkling.
Towards the evaluation of defects in MoS 2 using cryogenic photoluminescence spectroscopyWe reveal the power of cryogenic photoluminescence (PL) for exploring defects in transition metal dichalcogenides (TMDs) via characteristic relaxation mechanisms of the excitons involved. We demonstrate that the transfer process has enormous impact on amount, localization and type of defects within a single fl ake giving rise to signifi cant variation of electronic and optical properties of the TMD monolayers.Our study thus provides a new insight into the defect-driven phenomena in TMDs, with prospect for research of TMD-based heterostructures and superlattices.Characterization of the type and density of defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) is important as the nature of these defects strongly influences the electronic and optical properties of the material, especially its photoluminescence (PL). Defect characterization is not as straightforward as it is for graphene films, where the D and D' Raman scattering modes easily indicate the density and type of defects in the graphene layer. Thus, in addition to the Raman scattering analysis, other spectroscopic techniques are necessary to perform detailed characterization of atomically thin TMD layers. We demonstrate that PL spectroscopy performed at liquid helium temperatures reveals the key fingerprints of defects in TMDs and hence provides valuable information about their origin and concentration.In our study, we address defects in chemical vapor deposition (CVD)-grown MoS 2 monolayers. A significant difference is observed between the as-grown monolayers compared with the CVD-grown monolayers transferred onto a Si/SiO 2 substrate, which contain extra defects due to the transfer process. We demonstrate that the temperature-dependent Raman and PL micro-spectroscopy techniques enable disentangling the contributions and locations of various defect types in TMD systems. † Electronic supplementary information (ESI) available: Additional details on the Raman and PL spectroscopies, decomposition of the Raman and PL spectra, and maps of the Raman and PL spectral parameters at different temperatures for the as-grown and transferred CVD MoS 2 . See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.