A white light on-axis digital holographic microscopy based on spectral phase shifting is described. We show experimentally that the spectral phase shifting based on-axis digital holographic microscopy can be used as an alternative to the PZT based phase shifting digital holographic microscopy. The proposed spectral phase shifting approach can provide a speckle-free capability since it employs the partial coherent source produced by combining a white light source and a spectral tunable filter. Another benefit of the proposed white light on-axis digital holographic microscopic system stemmed from spectral phase shifting approach is in the capability of providing a full color 3-D spectral section imaging.
A time-of-flight (TOF) based three dimensional (3D) image capturing system and its enhanced optical modulating device are presented. The 3D image capturing system includes 850nm IR emitter (typically compact Laser diodes) and high speed image modulator, so called optical shutter. The optical shutter consists of multi-layered optical resonance cavity and electro-absorptive layers. The optical shutter is a solid-state controllable filter which modulates the IR image to extract the phase delay due to TOF of the emitting IR light. This presentation especially addresses robustness issues and solutions when operated under practical environments such as ambient temperature variation and existence of strong ambient light (e.g. outdoors). The wavelength of laser diode varies substantially depending on the ambient temperature, which degrades the modulation efficiency. To get a robust operation, the bandwidth of transmittance of the optical shutter is drastically improved with a novel coupled Fabry-Perot resonance cavity design to come up with the wavelength variation of the laser diode. Also, to suppress the interference of solar irradiance to IR source signal, a novel driving scheme is applied, in which IR light and optical shutter modulation duties are timely localized, i. e. 'bursted'.Suggested novel optical shutter design and burst driving scheme enable capturing of a full HD resolution of depth image under the realistic usage environments, which so far tackle the commercialization of TOF cameras. Design, fabrication, and evaluation of the optical shutter; and, 3D capturing system prototype, image test results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.