Evaluation of regional myocardial blood flow by conventional scintigraphic techniques is limited to the qualitative assessment of regional tracer distribution. Dynamic imaging with positron emission tomography allows the quantitative delineation of myocardial tracer kinetics and, hence, the measurement of physiologic processes such as myocardial blood flow. To test this hypothesis, positron emission tomographic imaging in combination with N-13 ammonia was performed at rest and after pharmacologically induced vasodilation in seven healthy volunteers. Myocardial and blood time-activity curves derived from regions of interest over the heart and ventricular chamber were fitted using a three compartment model for N-13 ammonia, yielding rate constants for tracer uptake and retention. Myocardial blood flow (K1) averaged 88 +/- 17 ml/min per 100 g at rest and increased to 417 +/- 112 ml/min per 100 g after dipyridamole infusion (0.56 mg/kg) and handgrip exercise. The coronary reserve averaged 4.8 +/- 1.3 and was not significantly different in the septal, anterior and lateral walls of the left ventricle. Blood flow values showed only a minor dependence on the correction for blood metabolites of N-13 ammonia. These data demonstrate that quantification of regional myocardial blood flow is feasible by dynamic positron emission tomographic imaging. The observed coronary flow reserve after dipyridamole is in close agreement with the results obtained by invasive techniques, indicating accurate flow estimates over a wide range. Thus, positron emission tomography may provide accurate and noninvasive definition of the functional significance of coronary artery disease and may allow the improved selection of patients for revascularization.
Aging does not alter significantly dipyridamole-induced hyperemic flows; although coronary vascular resistance after dipyridamole was somewhat increased in older subjects. The gradual decline of the myocardial blood flow reserve correlates with an age-related increase of baseline myocardial work and blood flow. These findings suggest that the reduced flow reserve with age is primarily due to increased cardiac work and blood flow at rest rather than to an abnormal vasodilator capacity.
Positron emission tomography (PET) was applied to the measurement of myocardial perfusion using the perfusion tracer 13N-labeled ammonia. 13N ammonia was delivered intravenously to 13 healthy volunteers both at rest and during supine bicycle exercise. Dynamic PET imaging was obtained in three cross-sectional planes for 10 minutes commencing with each injection. The left ventricle was divided into eight sectors, and a small region of interest was assigned to the left ventricular blood pool to obtain the arterial input function. The net extraction of 13N ammonia was obtained for each sector by dividing the tissue 13N concentration at 10 minutes by the integral of the input function from the time of injection to 10 minutes. With this approach for calculating net extractions, rest and exercise net extractions were not significantly different from each other. To obviate possible overestimation of the true 13N ammonia input function by contamination by '3N-labeled compounds other than 13N ammonia or by spillover from myocardium into blood pool, the net extractions were calculated using only the first 90 seconds of the blood and tissue time-activity curves. This approach for calculating net extractions yielded significant differences between rest and exercise, with an average ratio of exercise to rest of 1.38+0.34. Nonetheless, the increase was less than predicted from the average 2.7-2.8-fold increase in double product at peak exercise or the 1.7-fold increase in double product at 1 minute after exercise. However, when the first 90 seconds of dynamic data were fit with a two compartment tracer kinetic model, average perfusion rates of 0.75+±0.43 ml/min/g at rest and 1.50± 0.74 ml/min/g with exercise were obtained. This average increase in perfussion of 2.2-fold corresponded to similar average increases in double product. Thus, the noninvasive technique of PET imaging with 13N ammonia shows promise for future applications in determining absolute flows in patients with coronary artery disease. (Circulation 1989;80:1328-1337 T he reference standard for diagnosing coronary artery disease has long been considered to be coronary angiography. However, the limitations of this shadow technique, the variability of subjective readings of angiograms, and the variable relations of percent stenosis and coronary perfusion have emphasized the need for improved means to assess the functional severity of coronary
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.