Ensembles of numerical weather prediction (NWP) model predictions are used for a variety of forecasting applications. Such ensembles quantify the uncertainty of the prediction because the spread in the ensemble predictions is correlated to forecast uncertainty. For atmospheric transport and dispersion and wind energy applications in particular, the NWP ensemble spread should accurately represent uncertainty in the low-level mean wind. To adequately sample the probability density function (PDF) of the forecast atmospheric state, it is necessary to account for several sources of uncertainty. Limited computational resources constrain the size of ensembles, so choices must be made about which members to include. No known objective methodology exists to guide users in choosing which combinations of physics parameterizations to include in an NWP ensemble, however. This study presents such a methodology. The authors build an NWP ensemble using the Advanced Research Weather Research and Forecasting Model (ARW-WRF). This 24-member ensemble varies physics parameterizations for 18 randomly selected 48-h forecast periods in boreal summer 2009. Verification focuses on 2-m temperature and 10-m wind components at forecast lead times from 12 to 48 h. Various statistical guidance methods are employed for down-selection, calibration, and verification of the ensemble forecasts. The ensemble down-selection is accomplished with principal component analysis. The ensemble PDF is then statistically dressed, or calibrated, using Bayesian model averaging. The postprocessing techniques presented here result in a recommended down-selected ensemble that is about half the size of the original ensemble yet produces similar forecast performance, and still includes critical diversity in several types of physics schemes.
As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from the public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers. The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, which forms the basis of the system beyond about 6 h. For short-range (0–6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short- to midterm irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. This paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.
The shortwave radiative impacts of unresolved cumulus clouds are investigated using 6-h ensemble simulations performed with the WRF-Solar Model and high-quality observations over the contiguous United States for a 1-yr period. The ensembles use the stochastic kinetic energy backscatter scheme (SKEBS) to account for implicit model uncertainty. Results indicate that parameterizing the radiative effects of both deep and shallow cumulus clouds is necessary to largely reduce (55%) a systematic overprediction of the global horizontal irradiance. Accounting for the model’s effective resolution is necessary to mitigate the underdispersive nature of the ensemble and provide meaningful quantification of the short-range prediction uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.