Cephalic index is a highly useful method for planning surgical procedures, as well as assessing their effectiveness in correcting cranial deformations in children. There are relatively very few studies measuring cephalic index in healthy Caucasian young children. The aim of our study was to develop a classification of current cephalic index for healthy Caucasian children up to 3 years of age with normal brain development, using axial slice computer tomography performed with very thin slices (0.5 mm) resulting in more accurate measurements. 180 healthy infants (83 females and 97 males) were divided into 5 age categories: 0–3, 4–6, 7–12, 13–24, and 25–36 months. The average value of cephalic index in children up to 3 years of age amounted to 81.45 ± 7.06. The index value in case of children under 3 months was 80.19, 4 to 6 months was 81.45, 7 to 12 months was 83.15, in children under 2 years was 81.05, and in children under 3 years was 79.76. Mesocephaly is the dominating skull shape in children. In this study, we formulated a classification of current cephalic indices of children with normal brain development. Our date appears to be of utmost importance in anthropology, anatomy forensic medicine, and genetics.
The purpose of this paper is to examine the role of molecular mobility in the recrystallization process from the amorphous state of the anticholesterol drug ezetimibe. Both the molecular dynamics and crystallization kinetics have been studied using various experimental techniques, such as broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Our investigations have shown that ezetimibe easily recrystallizes from the disordered state, both below and above its glass transition temperature (Tg = 336 K). Moreover, we found that an only slightly elevated pressure (5 MPa) significantly accelerates the recrystallization process at T > Tg. We predict that the structural relaxation time of amorphous ezetimibe at 293 K (storage temperature) and ambient pressure is only 22 days. This result corresponds to the characteristic time, determined from XRD measurements, for amorphous ezetimibe to recrystallize during storage at Troom = 298 K. It leads to the conclusion that the molecular mobility reflected in structural relaxation of ezetimibe is mainly responsible for devitrification of this drug. Finally, we determined a relatively easy way to improve the physical stability of the drug by preparing a binary amorphous ezetimibe-Soluplus mixture. Ezetimibe in an amorphous mixture with 20 wt % Soluplus has a much better (over six times) solubility than the pure crystalline material.
This study for the first time investigates physicochemical properties of amorphous indapamide drug (IND), which is a known diuretic agent commonly used in the treatment of hypertension. The solid-state properties of the vitrified, cryomilled and ball-milled IND samples were analyzed using X-ray powder diffraction (XRD), mass spectrometry, nuclear magnetic resonance (NMR), infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). These analytical techniques enabled us (i) to confirm the purity of obtained amorphous samples, (ii) to describe the molecular mobility of IND in the liquid and glassy state, (iii) to determine the parameters describing the liquid-glass transition i.e. Tg and dynamic fragility, (iv) to test the chemical stability of amorphous IND in various temperature conditions and finally (v) to confirm the long-term physical stability of the amorphous samples. These studies were supplemented by density functional theory (DFT) calculations and apparent solubility studies of the amorphous IND in 0.1 M HCl, phosphate buffer (pH=6.8), and water (25 and 37 °C).
In this paper the molecular dynamics of a common local-anesthetic drug, lidocaine hydrochloride (LD-HCl), and its water mixtures were investigated. By means of broadband dielectric spectroscopy and calorimetric measurements it was shown that even a small addition of water causes a significant effect on the relaxation dynamics of analyzed protic ionic liquid. Apart from the two well-resolved relaxations (σ- and γ-processes) and the β-mode, identified as the JG-process, observed for anhydrous LD-HCl, a new relaxation peak (υ) is visible in the dielectric spectra of aqueous mixtures of this drug. Additionally, the significant effect of the water on the glass transition temperature of LD-HCl was found. The sample characterized with mole fraction of water X(w) = 0.44 reveals the glass transition temperature T(g), 42 K lower than that of anhydrous material (307 K). Finally, it was shown that by amorphization of the hydrochloride salt of lidocaine it is possible to obtain its room temperature ionic liquid form.
The medical burden caused by respiratory manifestations of influenza virus (IV) outbreak as an infectious respiratory disease is so great that governments in both developed and developing countries have allocated significant national budget toward the development of strategies for prevention, control, and treatment of this infection, which is seemingly common and treatable, but can be deadly. Frequent mutations in its genome structure often result in resistance to standard medications. Thus, new generations of treatments are critical to combat this ever-evolving infection. Plant materials and active compounds have been tested for many years, including, more recently, active compounds like flavonoids. Quercetin is a compound belonging to the flavonols class and has shown therapeutic effects against influenza virus. The focus of this review includes viral pathogenesis as well as the application of quercetin and its derivatives as a complementary therapy in controlling influenza and its related symptoms based on the targets. We also touch on the potential of this class of compounds for treatment of SARS-COV-2, the cause of new pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.