HIV-1 Vpr is a viral accessory protein that activates ATR through the induction of DNA replication stress. ATR activation results in cell cycle arrest in G2 and induction of apoptosis. In the present study, we investigate the role of the ubiquitin/proteasome system (UPS) in the above activity of Vpr. We report that the general function of the UPS is required for Vpr to induce G2 checkpoint activation, as incubation of Vpr-expressing cells with proteasome inhibitors abolishes this effect. We further investigated in detail the specific E3 ubiquitin ligase subunits that Vpr manipulates. We found that Vpr binds to the DCAF1 subunit of a cullin 4a/DDB1 E3 ubiquitin ligase. The carboxy-terminal domain Vpr(R80A) mutant, which is able to bind DCAF1, is inactive in checkpoint activation and has dominant-negative character. In contrast, the mutation Q65R, in the leucine-rich domain of Vpr that mediates DCAF1 binding, results in an inactive Vpr devoid of dominant negative behavior. Thus, the interaction of Vpr with DCAF1 is required, but not sufficient, for Vpr to cause G2 arrest. We propose that Vpr recruits, through its carboxy terminal domain, an unknown cellular factor that is required for G2-to-M transition. Recruitment of this factor leads to its ubiquitination and degradation, resulting in failure to enter mitosis.
Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G 2 phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G 2 arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G 2 arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4 ؉ -lymphocyte cell cycle and apoptosis induction in the progressive CD4؉ -lymphocyte depletion characteristic of HIV-1 pathogenesis.
Natural killer (NK) cells are stimulated by ligands on virus-infected cells. We have recently demonstrated that NK cells respond to human immunodeficiency virus type-1 (HIV-1)-infected autologous T-cells, in part, through the recognition of ligands for the NK cell activating receptor NKG2D on the surface of the infected cells. Uninfected primary CD4pos T-cell blasts express little, if any, NKG2D ligands. In the present study we determined the mechanism through which ligands for NKG2D are induced on HIV-1-infected cells. Our studies reveal that expression of vpr is necessary and sufficient to elicit the expression of NKG2D ligands in the context of HIV-1 infection. Vpr specifically induces surface expression of the unique-long 16 binding proteins (ULBP)-1 and ULBP-2, but not ULBP-3, MHC class I-related chain molecules (MIC)-A or MIC-B. In these studies we also demonstrated that Vpr increases the level of ULBP-1 and ULBP-2 mRNA in primary CD4pos T-cell blasts. The presence of ULBP-1 and ULBP-2 on HIV-1 infected cells is dependent on the ability of Vpr to associate with a protein complex know as Cullin 4a (Cul4a)/damaged DNA binding protein 1 (DDB1) and Cul4a-associated factor-1(DCAF-1) E3 ubiquitin ligase (Cul4aDCAF-1). ULBP-1 and -2 expression by Vpr is also dependent on activation of the DNA damage sensor, ataxia telangiectasia and rad-3-related kinase (ATR). When T-cell blasts are infected with a vpr-deficient HIV-1, NK cells are impaired in killing the infected cells. Thus, HIV-1 Vpr actively triggers the expression of the ligands to the NK cell activation receptor.
The HIV-1 accessory protein viral protein R (Vpr) causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage–signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45α was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4–3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.
The human immunodeficiency virus type-1 (HIV-1) accessory gene vpr encodes a conserved 96-amino-acid protein that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. Expression of vpr in CD4 þ lymphocytes results in G 2 arrest, followed by apoptosis. In a previous study, we identified the ataxia telangiectasia-mutated (ATM) and Rad3-related protein (ATR) as a cellular factor that mediates Vpr-induced cell cycle arrest. In the present study, we report that the breast cancer-associated protein-1 (BRCA1), a known target of ATR, is activated in the presence of Vpr. In addition, the gene encoding the growth arrest and DNA damage-45 protein a (GADD45a), a known transcriptional target of BRCA1, is upregulated by Vpr in an ATRdependent manner. We demonstrate that RNAi-mediated silencing of either ATR or GADD45a leads to nearly complete suppression of the proapoptotic effect of Vpr. Our results support a model in which Vpr-induced apoptosis is mediated via ATR phosphorylation of BRCA1, and consequent upregulation of GADD45a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.