Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter-and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss' kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter-and intrarater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI. Patients with pulmonary hemorrhage (P-Hem) suffer from repeated bleeding into the lungs, which can result in dyspnea and if untreated, may have life threatening consequences 1. There are various causes which lead to P-Hem, including drug abuse, premature birth, leukaemia, autoimmune disorders and immunodeficiencies 2-6. In this paper, we focus on a special subtype of P-Hem called exercise-induced pulmonary hemorrhage (EIPH) in horses. Although EIPH also affects healthy human athletes 7 and racing greyhounds 8 , it is diagnosed most commonly in racing horses and causes reduced athletic performance 9-12. The gold standard for diagnosis of P-Hem in humans and equine animals is to perform cytology of bronchoalveolar lavage fluid (BALF) 4,13 using a scoring system as explained by Golde et al. 4. The red blood cells of the bleeding are degraded into an iron-storage complex called hemosiderin by alveolar macrophages. Hemosiderin-laden macrophages are called hemosiderophages. Prior to microscopic evaluation, the cells are extracted by the BALF procedure and stained with Perlss' Prussian Blue 14 or Turnbull's Blue 15 in order to visualise the iron pigments contained in the hemosiderin. According to the commonly used scoring system (macrophages hemosiderin score) by Golde et al. 4 , alveolar macrophages can be distinguished into five grades depending on their hemosiderin content. This scoring system is based on the principle that a higher score correlates with increased alveolar bleeding 16 .
The prevalence of bacteriuria in dogs without clinical signs of urinary tract infection in this population was low (2.1%). An at-risk population could not be identified because of the small number of positive outcomes. A positive urinalysis showed poor agreement with urine culture results and therefore the decision to treat without performing a urine culture is not advised.
The current report describes the diagnosis of a nasopharyngeal granuloma due to a fungal infection by Trichosporon loubieri. This is the first report of successful treatment of nasal granuloma formation caused by Trichosporon species infection in a cat.
Exercise-induced pulmonary hemorrhage (EIPH) is a relevant respiratory disease in sport horses, which can be diagnosed by examination of bronchoalveolar lavage fluid (BALF) cells using the total hemosiderin score (THS). The aim of this study was to evaluate the diagnostic accuracy and reproducibility of annotators and to validate a deep learning-based algorithm for the THS. Digitized cytological specimens stained for iron were prepared from 52 equine BALF samples. Ten annotators produced a THS for each slide according to published methods. The reference methods for comparing annotator’s and algorithmic performance included a ground truth dataset, the mean annotators’ THSs, and chemical iron measurements. Results of the study showed that annotators had marked interobserver variability of the THS, which was mostly due to a systematic error between annotators in grading the intracytoplasmatic hemosiderin content of individual macrophages. Regarding overall measurement error between the annotators, 87.7% of the variance could be reduced by using standardized grades based on the ground truth. The algorithm was highly consistent with the ground truth in assigning hemosiderin grades. Compared with the ground truth THS, annotators had an accuracy of diagnosing EIPH (THS of < or ≥ 75) of 75.7%, whereas, the algorithm had an accuracy of 92.3% with no relevant differences in correlation with chemical iron measurements. The results show that deep learning-based algorithms are useful for improving reproducibility and routine applicability of the THS. For THS by experts, a diagnostic uncertainty interval of 40 to 110 is proposed. THSs within this interval have insufficient reproducibility regarding the EIPH diagnosis.
Pulmonary hemorrhage (P-Hem) occurs among multiple species and can have various causes. Cytology of bronchoalveolar lavage fluid (BALF) using a 5-tier scoring system of alveolar macrophages based on their hemosiderin content is considered the most sensitive diagnostic method. We introduce a novel, fully annotated multi-species P-Hem dataset, which consists of 74 cytology whole slide images (WSIs) with equine, feline and human samples. To create this high-quality and high-quantity dataset, we developed an annotation pipeline combining human expertise with deep learning and data visualisation techniques. We applied a deep learning-based object detection approach trained on 17 expertly annotated equine WSIs, to the remaining 39 equine, 12 human and 7 feline WSIs. The resulting annotations were semi-automatically screened for errors on multiple types of specialised annotation maps and finally reviewed by a trained pathologist. Our dataset contains a total of 297,383 hemosiderophages classified into five grades. It is one of the largest publicly available WSIs datasets with respect to the number of annotations, the scanned area and the number of species covered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.