Thymocytes undergoing TCRβ gene rearrangements are maintained in a low or nonproliferating state during early T cell development. This block in cell cycle progression is not released until the expression of a functional pre-TCR, which is composed of a successfully rearranged TCRβ-chain and the Pre-Tα-chain. The regulatory molecules responsible for the coordination of these differentiation and proliferation events are currently unknown. E2A and HEB are structurally and functionally related basic helix-loop-helix transcription factors involved in T cell development. To reveal the function of E2A and HEB through the stage of pre-TCR expression and alleviate functional compensation between E2A and HEB, we use a double-conditional knockout model. The simultaneous deletion of E2A and HEB in developing thymocytes leads to a severe developmental block before pre-TCR expression and a dramatic reduction of Pre-Tα expression. These developmentally arrested thymocytes exhibit increased proliferation in vivo and dramatic expansion ex vivo in response to IL-7 signaling. These results suggest that E2A and HEB are not only critical for T cell differentiation but also necessary to retain developing thymocytes in cell cycle arrest before pre-TCR expression.
The basic helix-loop-helix transcription factor E2A is an essential regulator of B lymphocyte lineage commitment and is required to activate the expression of numerous B lineage-specific genes. Studies involving ectopic expression of Id proteins, which inhibit E2A as well as other basic helix-loop-helix proteins such as HEB, suggest additional roles of E2A at later stages of B cell development. We use E2A-deficient and E2A and HEB double-deficient pre-B cell lines to directly assess the function of E2A and HEB in B cell development after lineage commitment. We show that, in contrast to the established role of E2A in lineage commitment, elimination of E2A and HEB in pre-B cell lines has only a modest negative impact on B lineage gene expression. However, E2A single and E2A and HEB double-deficient but not HEB single-deficient cell lines show dramatically enhanced apoptosis upon growth arrest. To address the possible role of E2A in the regulation of B cell survival in vivo, we crossed IFN-inducible Cre-transgenic mice to E2A conditional mice. Cre-mediated E2A deletion resulted in a block in bone marrow B cell development and a significant reduction in the proportion and total number of splenic B cells in these mice. We show that Cre-mediated deletion of E2A in adoptively transferred mature B cells results in the rapid depletion of the transferred population within 24 h of Cre induction. These results reveal that E2A is not required to maintain B cell fate but is essential in promoting pre-B and B cell survival.
Biosensors have successfully demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or at the point of care. While microfluidic systems reduce the footprint for biochemical processing devices and electronic components are continually becoming smaller, optical components suitable for integration--such as LEDs and CMOS chips--are generally still too expensive for disposable components. This paper describes the integration of polymer diodes onto a biosensor chip to create a disposable device that includes both the detector and the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results using a hand-held reader attached to a laptop computer. The miniaturized biosensor with the disposable slide including the organic photodiode detected Staphylococcal enterotoxin B at concentrations as low as 0.5 ng/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.