Summary E-cigarette usage continues to rise, yet the safety of e-cigarette aerosols is questioned. Using murine models of acute and chronic e-cigarette aerosol inhalation, murine colon transcriptomics, and murine and human gut-derived organoids in co-culture models, we assessed the effects of e-cigarette use on the gut barrier. Histologic and transcriptome analyses revealed that chronic, but not acute, nicotine-free e-cigarette use increased inflammation and reduced expression of tight junction (TJ) markers. Exposure of murine and human enteroid-derived monolayers (EDMs) to nicotine-free e-cigarette aerosols alone or in co-culture with bacteria also causes barrier disruption, downregulation of TJ protein, and enhanced inflammation in response to infection. These data highlight the harmful effects of “non-nicotine” component of e-cigarettes on the gut barrier. Considering the importance of an intact gut barrier for host fitness and the impact of gut mucosal inflammation on a multitude of chronic diseases, these findings are broadly relevant to both medicine and public health.
E-cigarette and vaping device use continue to rise, particularly in adolescents and young adults, but the safety of inhaling the multitude of chemicals within e-cigarette aerosols has been questioned. While several studies have evaluated vaping effects on the lungs and heart; effects on the gastrointestinal tract remain unknown. Using established murine models of acute (1 week) and chronic (3 month) daily e-cigarette aerosol inhalation, both with nicotine-containing and vehicle control e-liquids, murine colon transcriptomics and organoid co-culture models, we assessed the effects of e-cigarette use on the gut barrier and mucosal health. Histologic analyses revealed that chronic exposure to nicotine-free e-cigarette aerosols induced mucosal inflammation. Transcriptome analyses revealed that chronic, but not acute, nicotine-free e-cigarette use significantly reduced expression of tight junction markers, including occluding, and drove expression of pro-inflammatory cytokines. Exposure of murine and human enteroid-derived monolayers (EDMs) to nicotine-free e-cigarette aerosols alone, or in co-culture with invasive E. coli, confirmed that repetitive exposure was sufficient to recapitulate the key findings observed in vivo, i.e., barrier-disruption, downregulation of occludin, inflammation, and an accentuated risk of and response to bacterial infection. These data highlight an unexpected harmful effect of e-cigarette use on the gut barrier and pinpoint non-nicotine chemical components common across >90% of e-cigarette e-liquids as the source of harm. Given the ever-expanding importance of the integrity of the gut barrier for host fitness, and impact of gut mucosal inflammation on a multitude of chronic diseases, these findings are broadly relevant to medicine and public health.SIGNIFICANCEThe safety of electronic cigarettes has been questioned amidst emerging evidence that they may derail our immune system and increase our susceptibility to infections. Despite these insights, their impact on the most critical entity that separates trillions of microbes from the largest immune system in our body, i.e., the gut barrier, remains unexplored. Using a combination of mouse models, gut transcriptomics, and murine and human gut-derived organoids, here we show that chronic exposure to aerosols of electronic-cigarette disrupts the gut barrier, increases its susceptibility to bacterial infections and triggers inflammation. Given the importance of the gut barrier in the maintenance of immune homeostasis, these findings provide valuable insights into the potential long-term harmful effects of electronic cigarettes on health.
Crohn's disease (CD) is a complex, clinically heterogeneous disease of multifactorial origin; there is no perfect pre-clinical model, little insight into the basis for such heterogeneity, and still no cure. To address these unmet needs, we sought to explore the translational potential of adult stem cell-derived organoids that not only retain their tissue identity, but also their genetic and epigenetic disease-driving traits. We prospectively created a biobank of CD patient-derived organoid cultures (PDOs) using biopsied tissues from colons of 34 consecutive subjects representing all clinical subtypes (Montreal Classification B1-B3 and perianal disease). PDOs were generated also from healthy subjects. Comparative gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and revealed that despite the clinical heterogeneity there are two major molecular subtypes: immune-deficient infectious-CD [IDICD] and stress and senescence-induced fibrostenotic-CD [S2FCD]. The transcriptome, genome and phenome show a surprising degree of internal consistency within each molecular subtype. The spectrum of morphometric, phenotypic, and functional changes within the living biobank reveals distinct differences between the molecular subtypes. These insights enabled drug screens that reversed subtype-specific phenotypes, e.g., impaired microbial clearance in IDICD was reversed using agonists for nuclear receptors, and senescence in S2FCD was rectified using senotherapeutics, but not vice versa. Phenotyped-genotyped CD-PDOs may fill the gap between basic biology and patient trials by enabling pre-clinical Phase 0 human trials for personalized therapeutics.
Adult stem cells from various organs can be propagated as epithelial organoids that not only retain their tissue identity, but also their genetic and epigenetic disease-driving traits. We report the establishment of Crohn’s Disease (CD) patient-derived organoid cultures (PDOs) using biopsied tissues from colons of 50 consecutive subjects representing all clinical subtypes (Montreal Classification B1–B3 and perianal disease). Organoids were also generated from healthy subjects. The spectrum of phenotypic and genotypic changes within the “living biobank” agrees well with many observations reported in CD tissues. Gene expression analyses show that despite the heterogeneity of clinical subtypes, there are two major molecular subtypes, each with unique phenotypic features: immune-deficient infectious-CD [IDICD] and senescence-induced fibrostenotic-CD [SIFCD]. CD-PDOs are amenable to high-throughput drug screens allowing for the detection of phenotype reversal. As examples, defective barrier integrity in B1-PDOs was restored with pre-/pro-biotics, impaired microbial clearance in IDICD was reversed using agonists for nuclear receptors, and SIFCD was rectified using senolytics and - morphics. Phenotyped-genotyped CD-PDOs may fill the gap between basic biology and patient trials by enabling pre-clinical Phase ‘0’ human trials for personalized and integrative therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.