Mosquitoes live under the endless threat of infections from different kinds of pathogens such as bacteria, parasites, and viruses. The mosquito defends itself by employing both physical and physiological barriers that resist the entry of the pathogen and the subsequent establishment of the pathogen within the mosquito. However, if the pathogen does gain entry into the insect, the insect mounts a vigorous innate cellular and humoral immune response against the pathogen, thereby limiting the pathogen’s propagation to nonpathogenic levels. This happens through three major mechanisms: phagocytosis, melanization, and lysis. During these processes, various signaling pathways that engage intense mosquito–pathogen interactions are activated. A critical overview of the mosquito immune system and latest information about the interaction between mosquitoes and pathogens are provided in this review. The conserved, innate immune pathways and specific anti-pathogenic strategies in mosquito midgut, hemolymph, salivary gland, and neural tissues for the control of pathogen propagation are discussed in detail.
BackgroundApplication of genomics and Next Generation sequencing has led to the identification of new class of cellular functional molecules, namely, small RNAs. Of the several classes of ncRNAs (non-coding RNA), microRNAs have been demonstrated to exert determinative influence on various cellular processes. It is becoming abundantly clear that host/vector/pathogen encoded microRNAs impact eventual pathogenesis. In this context, the participation of vector based microRNAs in disease transmission and pathogen development is being investigated intensively. A few studies have highlighted the role of vector encoded microRNAs in pathogen infection. We conducted this study to evaluate the role of host miRNAs upon CHIKV (Chikungunya Virus) infection in an important vector, Aedes albopictus.FindingsWe identified 88 and 79 known miRNAs in uninfected and CHIKV infected Ae. albopictus Singh's cell line respectively. We further identified nine novel miRNAs in Ae. albopictus. Comparison of the two libraries revealed differential expression of 77 common miRNAs between them. CHIKV infection specifically altered the miRNA profile of a specific set of eight miRNAs. Putative targets of these regulated miRNAs were identified and classified into their pathways.ConclusionsIn our study we have identified and described the profiles of various miRNAs upon CHIKV infection in Ae. albopictus. This investigation provides an insight about cellular modification by miRNAs during CHIKV infection and the results provide leads for identifying potential candidates for vector based antiviral strategies.
Blood feeding is an integral process required for physiological functions and propagation of the malaria vector Anopheles. During blood feeding, presence of the malaria parasite, Plasmodium in the blood induces several host effector molecules including microRNAs which play important roles in the development and maturation of the parasite within the mosquito. The present study was undertaken to elucidate the dynamic expression of miRNAs during gonotrophic cycle and parasite development in Anopheles stephensi. Using next generation sequencing technology, we identified 126 miRNAs of which 17 were novel miRNAs. The miRNAs were further validated by northern hybridization and cloning. Blood feeding and parasitized blood feeding in the mosquitoes revealed regulation of 13 and 16 miRNAs respectively. Expression profiling of these miRNAs revealed that significant miRNAs were down-regulated upon parasitized blood feeding with a repertoire of miRNAs showing stage specific up-regulation. Expression profiles of significantly modulated miRNAs were further validated by real time PCR. Target prediction of regulated miRNAs revealed overlapping targeting by different miRNAs. These targets included several metabolic pathways including metabolic, redox homeostasis and protein processing machinery components. Our analysis revealed tight regulation of specific miRNAs post blood feeding and parasite infection in An. stephensi. Such regulated expression suggests possible role of these miRNAs during gonotrophic cycle in mosquito. Another set of miRNAs were also significantly regulated at 42 h and 5 days post infection indicating parasite stage-specific role of host miRNAs. This study will result in better understanding of the role of miRNAs during gonotrophic cycle and parasite development in mosquito and can probably facilitate in devising novel malaria control strategies at vector level.
BackgroundChikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India.FindingsClinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country.ConclusionThis study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.