Background: Endothelin-converting enzymes (ECEs) degrade -amyloid (A) peptide. Results: ECE inhibition produces, in addition to extracellular A accumulation, intracellular A accumulation within endosomal/lysosomal and autophagic vesicles. Conclusion: An intracellular pool of A is regulated by ECE activity at the sites of production. Significance: ECE dysfunction may cause intraneuronal A accumulation, which is associated with neurotoxicity early in AD progression.
The data expands on our prior report that the lymphatic system participates in Aβ clearance from the brain. We propose that abnormalities in Aβ clearance through the lymphatic system may contribute to the development of cerebral amyloidosis. Melatonin and related indole molecules (i.e., indole- 3-propionic acid) are known to inhibit Aβ aggregation although they do not reverse aggregated Aβ or amyloid fibrils. Therefore, these substances should be further explored in prevention trials for delaying the onset of cognitive impairment in high risk populations.
Evidence has shown that lymphatic drainage contributes to removal of debris from the brain but its role in the accumulation of amyloid β peptides (Aβ) has not been demonstrated. We examined the levels of various forms of Aβ in the brain, plasma and lymph nodes in a transgenic model of Alzheimer’s disease (AD) at different ages. Herein, we report on the novel finding that Aβ is present in the cervical and axillary lymph nodes of AD transgenic mice and that Aβ levels in lymph nodes increase over time, mirroring the increase of Aβ levels observed in the brain. Aβ levels in lymph nodes were significantly higher than in plasma. At age 15.5 months, there was a significant increase of monomeric soluble Aβ40 (p=0.003) and Aβ42 (p=0.05) in the lymph nodes over the baseline values measured at 6 months of age. In contrast, plasma levels of Aβ40 showed no significant changes (p=0.68) and plasma levels Aβ42 significantly dropped (p=0.02) at the same age. Aβ concentration was low to undetectable in splenic lymphoid tissue and several other control tissues including heart, lung, liver, kidneys and intestine of the same animals, strongly suggesting that Aβ peptides in lymph nodes are derived from the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.