Cyclin-dependent kinase 2 (Cdk2) is essential for initiation of DNA synthesis in higher eukaryotes. Biochemical studies in Xenopus egg extracts and microinjection studies in human cells have suggested an additional function for Cdk2 in activation of Cdk1 and entry into mitosis. To further examine the role of Cdk2 in human cells, we generated stable clones with inducible expression of wild-type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Both exogenous proteins associated efficiently with endogenous cyclins. Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn inhibited progression through several distinct stages. Cdk2-dn induction could arrest cells at the G 1 /S transition, as previously observed in transient expression studies. However, under normal culture conditions, Cdk2-dn induction primarily arrested cells with S and G 2 /M DNA contents. Several observations suggested that the latter cells were in G 2 phase, prior to the onset of mitosis: these cells contained uncondensed chromosomes, low levels of cyclin B-associated kinase activity, and high levels of tyrosine-phosphorylated Cdk1. Furthermore, Cdk2-dn did not delay progression through mitosis upon release of cells from a nocodazole block. Although the G 2 arrest imposed by Cdk2-dn was similar to that imposed by the DNA damage checkpoint, the former was distinguished by its resistance to caffeine. These findings provide evidence for essential functions of Cdk2 during S and G 2 phases of the mammalian cell cycle.
The tumor suppressor p16INK4a inhibits cyclin-dependent kinases 4 and 6. This activates the retinoblastoma protein (pRB) and, through incompletely understood events, arrests the cell division cycle. To permit biochemical analysis of the arrest, we generated U2-OS osteogenic sarcoma cell clones in which p16 transcription could be induced. In these clones, binding of p16 to cdk4 and cdk6 abrogated binding of cyclin D1, p27 KIP1 , and p21 WAF1/CIP1 . Concomitantly, the total cellular level of p21 increased severalfold via a posttranscriptional mechanism. Most cyclin E-cdk2 complexes associated with p21 and became inactive, expression of cyclin A was curtailed, and DNA synthesis was strongly inhibited. Induction of p21 alone, in a sibling clone, to the level observed during p16 induction substantially reproduced these effects. Overexpression of either cyclin E or A prevented p16 from mediating arrest. We then extended these studies to HCT 116 colorectal carcinoma cells and a p21-null clone derived by homologous recombination. In the parental cells, p16 expression also augmented total cellular and cdk2-bound p21. Moreover, p16 strongly inhibited DNA synthesis in the parental cells but not in the p21-null derivative. These findings indicate that p21-mediated inhibition of cdk2 contributes to the cell cycle arrest imposed by p16 and is a potential point of cooperation between the p16/pRB and p14 ARF /p53 tumor suppressor pathways.
Mitotic entry, a critical decision point for maintaining genetic stability, is governed by the cyclin B/Cyclin dependent kinase 1 (Cdc2) complex. In Xenopus oocytes and early embryos, accumulation of cyclin B activates Cdk1, which then phosphorylates and activates the positive regulator Cdc25 in an autocatalytic feedback loop. However, cyclin B levels do not increase as some human cells approach mitosis, and the key factors regulating Cdk1 activation in human cells are unknown. We report here that reducing cyclin A expression by RNA interference (RNAi) in primary human fibroblasts inhibited activation of Cdc25B and Cdc25C and dephosphorylation of Cdk1 on tyrosine (tyr) 15. These results were reproduced in U2-OS cells by inducing the expression of a dominant-negative (dn) mutant of Cdk2, the principal cyclin A binding partner. Cdk2-dn induction could inhibit Cdc25B activity and foster Cdk1 tyr phosphorylation within the S phase, temporally dissociating these events from Cdk1 activation at mitosis. In contrast, reducing Cdk1 expression delayed mitotic entry without markedly impairing Cdc25B or Cdc25C activity. These results suggest that cyclin A/Cdk2 complexes are key regulators of Cdc25 and Cdk1 activation in human cells. This pathway appears to be commonly deregulated in cancer.
We are grateful to Jiri Lukas (Danish Cancer Society, Denmark) for providing us with the wild type Cdh1-expressing U2-OS cell line and the Cdh1 mutant (RVL-AAA) plasmid. We thank Andrew Ippolito for editorial assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.