Poor air quality arising from prescribed and wildfire smoke emissions poses threats to human health and therefore must be taken into account for the planning and implementation of prescribed burns for reducing contemporary fuel loading and other management goals. To better understand how smoke properties vary as a function of fuel beds and environmental conditions, we developed and tested a compact portable instrument package that integrates direct air sampling with air quality and meteorology sensing, suitable for in situ data collection within burn units and as a payload on multi-rotor small unmanned aircraft systems (sUASs). Co-located sensors collect carbon dioxide, carbon monoxide, and particulate matter data at a sampling rate of~0.5 Hz with a microcontroller-based system that includes independent data logging, power systems, radio telemetry, and global positioning system data. Sensor data facilitates precise remote canister collection of air samples suitable for laboratory analysis of volatile organic compounds (VOCs) and other major and trace gases. Instrument package specifications are compatible with common protocols for ground-based and airborne measurements. We present and discuss design specifications for the system and preliminary data collected in controlled burns at Tall Timbers Research Station, FL, USA and Sycan Marsh Preserve, OR, USA.
Bright surfaces across the western U.S. lead to uncertainties in satellite derived aerosol optical depth (AOD) where AOD is typically overestimated. With this in mind, a compact and portable instrument was developed to measure surface albedo on an unmanned aircraft system (UAS). This spectral albedometer uses two Hamamatsu micro-spectrometers (range: 340–780 nm) for measuring incident and reflected solar radiation at the surface. The instrument was deployed on 5 October 2017 in Nevada’s Black Rock Desert (BRD) to investigate a region of known high surface reflectance for comparison with albedo products from satellites. It was found that satellite retrievals underestimate surface reflectance compared to the UAS mounted albedometer. To highlight the importance of surface reflectance on the AOD from satellite retrieval algorithms, a 1-D radiative transfer model was used. The simple model was used to determine the sensitivity of AOD with respect to the change in albedo and indicates a large sensitivity of AOD retrievals to surface reflectance for certain combinations of surface albedo and aerosol optical properties. This demonstrates the need to increase the number of surface albedo measurements and an intensive evaluation of albedo satellite retrievals to improve satellite-derived AOD. The portable instrument is suitable for other applications as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.