Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow and metabolic outputs. However, ecosystem-level impacts of viral community diversity remains difficult to assess due to classification issues and few reference genomes. Here we establish a ~12-fold expanded global ocean DNA virome dataset of 195,728 60 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (interpopulation diversity) and microdiversity (intra-population genetic variation). These patterns 65 sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models. Introduction: 70Biodiversity is essential for maintaining ecosystem functions and services (reviewed by Tilman et al., 2014). In the oceans, the vast majority of biodiversity is contained within the microbial fraction containing prokaryotes and eukaryotic microbes, which represents ~60% of its biomass (Bar-On et al., 2018). Meta-analyses looking at changes in marine biodiversity show that biodiversity loss increasingly impairs the ocean's capacity to produce food, maintain water 75 quality, and recover from perturbations (Worm et al., 2006). To date, marine conservation efforts have focused on specific organismal communities, such as fisheries or coral reefs, rather than conserving whole ecosystem biodiversity. However, emerging studies across diverse sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas et al., 2015; Sunagawa et al., 125 2015;Brum et al., 2015;Lima-Mendez et al., 2015;Pesant et al. 2015;Roux et al., 2016), and help establish foundational ecological hypotheses for the field and a roadmap for the broader life sciences community to better study viruses in complex communities. Results & Discussion:The dataset. The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb 130 of sequencing across 145 samples distributed throughout the world's oceans ( Fig. 1A and Table S3; see Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased sequencing for mesopelagic samples (defined in our dataset as waters between 150m to 1,000m) and upgrading assemblies, both of which drastically improved sampling of the ocean viruses in these samples (results below). Additionally, we added 41 new samples derived from the Tara 135Oceans Polar Circle (TOPC) expedition, which traveled 25,000 km around the Arctic Ocean in 2013. These 41 Arctic Ocean viromes were generated to represent the most significantly climateimpacted region of the ocean, and an extreme environment. N...
Recent receding of the ice pack allows more sunlight to penetrate into the Arctic Ocean, enhancing productivity of a single annual phytoplankton bloom. Increasing river runoff may, however, enhance the yet pronounced upper ocean stratification and prevent any significant wind-driven vertical mixing and upward supply of nutrients, counteracting the additional light available to phytoplankton. Vertical mixing of the upper ocean is the key process that will determine the fate of marine Arctic ecosystems. Here we reveal an unexpected consequence of the Arctic ice loss: regions are now developing a second bloom in the fall, which coincides with delayed freezeup and increased exposure of the sea surface to wind stress. This implies that wind-driven vertical mixing during fall is indeed significant, at least enough to promote further primary production. The Arctic Ocean seems to be experiencing a fundamental shift from a polar to a temperate mode, which is likely to alter the marine ecosystem.
[1] The first quasi-annual time series of nutrients and chlorophyll fluorescence in the southeast Beaufort Sea showed that mixing, whether driven by wind, local convection, or brine rejection, and the ensuing replenishment of nutrients at the surface were minimal during autumn and winter. Anomalously high inventories of nutrients were observed briefly in late December, coinciding with the passage of an eddy generated offshore. The concentrations of NO 3 À in the upper mixed layer were otherwise low and increased slowly from January to April. The coincident decline of NO 2 À suggested nitrification near the surface. The vernal drawdown of NO 3 À in 2004 began at the ice-water interface during May, leaving as little as 0.9 mM of NO 3 À when the ice broke up. A subsurface chlorophyll maximum (SCM) developed promptly and deepened with the nitracline until early August. The diatom-dominated SCM possibly mediated half of the seasonal NO 3 À consumption while generating the primary NO 2 À maximum. Dissolved inorganic carbon and soluble reactive phosphorus above the SCM continued to decline after NO 3 À was depleted, indicating that net community production (NCP) exceeded NO 3 À -based new production. These dynamics contrast with those of productive Arctic waters where nutrient replenishment in the upper euphotic zone is extensive and NCP is fueled primarily by allochthonous NO 3 À . The projected increase in the supply of heat and freshwater to the Arctic should bolster vertical stability, further reduce NO 3 À -based new production, and increase the relative contribution of the SCM. This trend might be reversed locally or regionally by the physical forcing events that episodically deliver nutrients to the upper euphotic zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.