The contrast of outdoor images acquired under adverse weather conditions, especially foggy weather, is altered by the scattering of daylight by atmospheric particles. As a consequence, different methods have been designed to restore the contrast of these images. However, there is a lack of methodology to assess the performances of the methods or to rate them. Unlike image quality assessment or image restoration areas, there is no easy way to have a reference image, which makes the problem not straightforward to solve. In this paper, an approach is proposed which consists in computing the ratio between the gradient of the visible edges between the image before and after contrast restoration. In this way, an indicator of visibility enhancement is provided based on the concept of visibility level, commonly used in lighting engineering. Finally, the methodology is applied to contrast enhancement assessment and to the comparison of tone-mapping operators.
ABSTRACT:Fog disturbs the proper image processing in many outdoor observation tools. For instance, fog reduces the visibility of obstacles in vehicle driving applications. Usually, the estimation of the amount of fog in the scene image allows to greatly improve the image processing, and thus to better perform the observation task. One possibility is to restore the visibility of the contrasts in the image from the foggy scene image before applying the usual image processing. Several algorithms were proposed in the recent years for defogging. Before to apply the defogging, it is necessary to detect the presence of fog, not to emphasis the contrasts due to noise. Surprisingly, few a reduced number of image processing algorithms were proposed for fog detection and characterization. Most are dedicated to static cameras and can not be used when the camera is moving. Daytime fog is characterized by its extinction coefficient, which is equivalent to the visibility distance. A visibility-meter can be used for fog detection and characterization, but this kind of sensor performs an estimation in a relatively small volume of air, and is thus sensitive to heterogeneous fog, and air turbulence with moving cameras. In this paper, we propose an original algorithm, based on entropy minimization, to detect fog and estimate its extinction coefficient by the processing of stereo pairs. This algorithm is fast, provides accurate results using low cost stereo camera sensor and, the more important, can work when the cameras are moving. The proposed algorithm is evaluated on synthetic and camera images with ground truth. Results show that the proposed method is accurate, and, combined with a fast stereo reconstruction algorithm, should provide a solution, close to real time, for fog detection and visibility estimation for moving sensors.
Abstract:Traffic signs are designed to be clearly seen by drivers. However a little is known about the visual influence of the traffic sign environment on how it will be perceived. Computer estimation of the conspicuity from images using a camera mounted on a vehicle is thus of importance in order to be able to quickly make a diagnosis regarding conspicuity of traffic signs. Unfortunately, our knowledge about the human visual processing system is rather incomplete and thus conspicuity visual mechanisms remain poorly understood. A complete model for conspicuity is not known, only specific features are known to be of importance. It makes sense to assume that an important task for drivers is to search for traffic signs. We therefore propose a new paradigm for conspicuity estimation in search tasks based on statistical learning of the visual features of the object of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.