Urquhart (2016) investigated the market efficiency of Bitcoin by means of five different tests on Bitcoin returns. It was concluded that the Bitcoin returns do not satisfy the efficient market hypothesis. We show here that a simple power transformation of the Bitcoin returns do satisfy the hypothesis through the use of eight different tests. The transformation used does not lead to any loss of information.
With the exception of Bitcoin, there appears to be little or no literature on GARCH modelling of cryptocurrencies. This paper provides the first GARCH modelling of the seven most popular cryptocurrencies. Twelve GARCH models are fitted to each cryptocurrency, and their fits are assessed in terms of five criteria. Conclusions are drawn on the best fitting models, forecasts and acceptability of value at risk estimates.
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.
Abstract:We analyze statistical properties of the largest cryptocurrencies (determined by market capitalization), of which Bitcoin is the most prominent example. We characterize their exchange rates versus the U.S. Dollar by fitting parametric distributions to them. It is shown that returns are clearly non-normal, however, no single distribution fits well jointly to all the cryptocurrencies analysed. We find that for the most popular currencies, such as Bitcoin and Litecoin, the generalized hyperbolic distribution gives the best fit, while for the smaller cryptocurrencies the normal inverse Gaussian distribution, generalized t distribution, and Laplace distribution give good fits. The results are important for investment and risk management purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.