The Generic Modeling Environment (GME) is a configurable tool suite that facilitates the rapid creation of domainspecific model-integrated program synthesis environments. There are three characteristics of the GME that make it a valuable tool for the construction of domain-specific modeling environments. First, the GME provides generic modeling primitives that assist an environment designer in the specification of new graphical modeling environments. Second, these generic primitives are specialized to create the domain-specific modeling concepts through meta-modeling. The meta-models explicitly support composition enabling the creation of composite modeling languages supporting multiple paradigms. Third, several ideas from prototype-based programming languages have been integrated with the inherent model containment hierarchy, which gives the domain expert the ability to clone graphical models. This paper explores the details of these three ideas and their implications.
Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) forsupporting model-driven engineering. Even though these tools facilitate theautomation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.