Wind erosion and associated dust emissions play a fundamental role in many ecological processes and provide important biogeochemical connectivity at scales ranging from individual plants up to the entire globe. Yet, most ecological studies do not explicitly consider dust‐driven processes, perhaps because most relevant research on aeolian (wind‐driven) processes has been presented in a geosciences rather than an ecological context. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the scale of plants and surrounding space to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. It is likely that changes in climate and intensification of land use will lead to increased dust production from many drylands. To address these issues, environmental scientists, land managers, and policy makers need to consider wind erosion and dust emissions more explicitly in resource management decisions.
[1] Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with "hot spots" being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.
Soil erosion is an important process in dryland ecosystems, yet measurements and comparisons of wind and water erosion within and among such ecosystems are lacking. Here we compare wind erosion and transport field measurements with water erosion and transport from rainfall-simulation for three different semi-arid ecosystems: a shrubland near Carlsbad, New Mexico; a grassland near Denver, Colorado; and a forest near Los Alamos, New Mexico. In addition to comparing erosion loss from an area, we propose a framework for comparing horizontal mass transport of wind-and water-driven materials as a metric for local soil redistribution. Median erosion rates from wind for vertical mass flux measurements (g m −2 d −1 ) were 1·5 × 10 −2 for the shrubland, 8·3 × 10 −3 for the grassland, and 9·1 × 10 −3 for the forest. Wind-driven transport from horizontal mass flux measurements was greatest in the shrubland (15·0 g m) followed by the grassland (1·5 g m −2 d −1 ) and the forest sites (0·17 g m −2 d −1 ). Annual projections accounting for longer-term site meteorology suggest that wind erosion exceeds water erosion at the shrubland by c. 33 times and by c. five times at the forest, but not the grassland site, where the high clay content of the soils contributed to greater amounts of water erosion: water erosion exceeded wind erosion by about three times. Horizontal transport by wind was greater than that by water for all three systems, overwhelmingly so in the shrubland (factor of c. 2200). Our results, which include some of the only wind erosion measurements to date for semi-arid grasslands and forests, provide a basis for hypothesizing trends in wind and water erosion among ecosystems, highlight the importance of wind erosion and transport in semi-arid ecosystems, and have implications for land surface geomorphology, contaminant transport, and ecosystem biogeochemistry.
Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s(-1); (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.