The COVID-19 global pandemic has likely affected air quality due to extreme changes in human behavior. We assessed air quality during the COVID-19 pandemic for fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) in the continental United States from January 8th-April 21st in 2017–2020. We considered pollution during the COVID-19 period (March 13–April 21st) and the pre-COVID-19 period (January 8th-March 12th) with 2020 representing ‘current’ data and 2017–2019 representing ‘historical’ data. County-level pollution concentrations were compared between historical versus current periods, and counties were stratified by institution of early or late non-essential business closures. Statistically significant NO 2 declines were observed during the current COVID-19 period compared to historical data: a 25.5% reduction with absolute decrease of 4.8 ppb. PM 2.5 also showed decreases during the COVID-19 period, and the reduction is statistically significant in urban counties and counties from states instituting early non-essential business closures. Understanding how air pollution is affected during COVID-19 pandemic will provide important clues regarding health effects and control of emissions. Further investigation is warranted to link this finding with health implications.
A revised procedure for the design of steel plate shear walls is proposed. In this procedure the thickness of the infill plate is found using equations that are derived from the plastic analysis of the strip model, which is an accepted model for the representation of steel plate shear walls. Comparisons of experimentally obtained ultimate strengths of steel plate shear walls and those predicted by plastic analysis are given and reasonable agreement is observed. Fundamental plastic collapse mechanisms for several, more complex, wall configurations are also given. Additionally, an existing codified procedure for the design of steel plate walls is reviewed and a section of this procedure which could lead to designs with less-than-expected ultimate strength is identified. It is shown that the proposed procedure eliminates this possibility without changing the other valid sections of the current procedure.
This paper describes the prototype design, specimen design, experimental setup, and experimental results of three light-gauge steel plate shear wall concepts. Prototype light-gauge steel plate shear walls are designed as seismic retrofits for a hospital structure in an area of high seismicity, and emphasis is placed on minimizing their impact on the existing framing. Three single-story test specimens are designed using these prototypes as a basis, two specimens with flat infill plates (thicknesses of 0.9 mm) and a third using a corrugated infill plate (thickness of 0.7 mm). Connection of the infill plates to the boundary frames is achieved through the use of bolts in combination with industrial strength epoxy or welds, allowing for mobility of the infills if desired. Testing of the systems is done under quasi-static conditions. It is shown that one of the flat infill plate specimens, as well as the specimen utilizing a corrugated infill plate, achieve significant ductility and energy dissipation while minimizing the demands placed on the surrounding framing. Experimental results are compared to monotonic pushover predictions from computer analysis using a simple model and good agreement is observed.
Background Occurrence, severity and geographic extent of droughts are anticipated to increase under climate change, but the health consequences of drought conditions are unknown. We estimate risks of cardiovascular and respiratory-related hospitalization and mortality associated with drought conditions for the western U.S. elderly population. Methods For counties in the western U.S. (N=618) and for the period 2000 to 2013, we use data from the U.S. Drought Monitor to identify: 1) full drought periods; 2) non-drought periods; and 3) worsening drought periods stratified by low- and high-severity. We use Medicare claims to calculate daily rates of cardiovascular admissions, respiratory admissions, and deaths among adults 65 years or older. Using a two-stage hierarchical model, we estimated the percentage change in health risks when comparing drought to non-drought period days controlling for daily weather and seasonal trends. Findings On average there were 2·1 million days and 0·6 million days classified as non-drought periods and drought periods, respectively. Compared to non-drought periods, respiratory admissions significantly decreased by −1·99% (95% posterior interval (PI): −3·56, −0·38) during the full drought period, but not during worsening drought conditions. Mortality risk significantly increased by 1·55% (95% PI: 0·17, 2·95) during the high-severity worsening drought period, but not the full drought period. Cardiovascular admissions did not differ significantly during either drought or worsening drought periods. In counties where drought occurred less frequently, we found risks for cardiovascular disease and mortality to increase during worsening drought conditions. Interpretations Drought conditions increased risk of mortality during high-severity worsening drought, but decreased the risk of respiratory admissions during full drought periods among older adults. Counties that experience fewer drought events show larger risk for mortality and cardiovascular disease. This research describes an understudied environmental association with global health significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.