Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Pannexin 1 (panx1) is a large-pore membrane channel expressed in many tissues of mammals, including neurons and glial cells. Panx1 channels are highly permeable to calcium and adenosine triphosphatase (ATP); on the other hand, they can be opened by ATP and glutamate, two crucial molecules for acute and chronic pain signaling in the spinal cord dorsal horn, thus suggesting that panx1 could be a key component for the generation of central sensitization during persistent pain. In this study, we examined the effect of three panx1 blockers, namely, 10panx peptide, carbenoxolone, and probenecid, on C-reflex wind-up activity and mechanical nociceptive behavior in a spared nerve injury neuropathic rat model involving sural nerve transection. In addition, the expression of panx1 protein in the dorsal horn of the ipsilateral lumbar spinal cord was measured in sural nerve-transected and sham-operated control rats. Sural nerve transection resulted in a lower threshold for C-reflex activation by electric stimulation of the injured hindpaw, together with persistent mechanical hypersensitivity to pressure stimuli applied to the paw. Intrathecal administration of the panx1 blockers significantly depressed the spinal C-reflex wind-up activity in both neuropathic and sham control rats, and decreased mechanical hyperalgesia in neuropathic rats without affecting the nociceptive threshold in sham animals. Western blotting showed that panx1 was similarly expressed in the dorsal horn of lumbar spinal cord from neuropathic and sham rats. The present results constitute the first evidence that panx1 channels play a significant role in the mechanisms underlying central sensitization in neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.