Abstract. Real world localization tasks based on LiDAR usually face a high proportion of outliers arising from erroneous measurements and changing environments. However, applications such as autonomous driving require a high integrity in all of their components, including localization. Standard localization approaches are often based on (recursive) least squares estimation, for example, using Kalman filters. Since least squares minimization shows a strong susceptibility to outliers, it is not robust.In this paper, we focus on high integrity vehicle localization and investigate a maximum consensus localization strategy. For our work, we use 2975 epochs from a Velodyne VLP-16 scanner (representing the vehicle scan data), and map data obtained using a Riegl VMX-250 mobile mapping system. We investigate the effects of varying scene geometry on the maximum consensus result by exhaustively computing the consensus values for the entire search space. We analyze the deviations in position and heading for a circular course in a downtown area by comparing the estimation results to a reference trajectory, and show the robustness of the maximum consensus localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.