The Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA1) is expressed in latently EBV-infected B lymphocytes that persist for life in healthy virus carriers, and is the only viral protein regularly detected in all malignancies associated with EBV. Major histocompatibility complex (MHC) class I-restricted, EBNA1-specific cytotoxic T lymphocyte (CTL) responses have not been demonstrated. Using recombinant vaccinia viruses encoding chimaeric proteins containing an immunodominant human leukocyte antigen A11-restricted CTL epitope, amino acids 416-424 of the EBNA4 protein, inserted within the intact EBNA1, or within an EBNA1 deletion mutant devoid of the internal Gly-Ala repetitive sequence, we demonstrate that the Gly-Ala repeats generate a cis-acting inhibitory signal that interferes with antigen processing and MHC class I-restricted presentation. Insertion of the Gly-Ala repeats downstream of the 416-424 epitope inhibited CTL recognition of a chimaeric EBNA4 protein. The results highlight a previously unknown mechanism of viral escape from CTL surveillance, and support the view that the resistance of cells expressing EBNA1 to rejection mediated by CTL is a critical requirement for EBV persistence and pathogenesis.
The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA) 1 is expressed in latently infected B lymphocytes that persist for life in healthy virus carriers and is the only viral protein regularly detected in all EBV associated malignancies. The Gly-Ala repeat domain of EBNA1 was shown to inhibit in cis the presentation of major histocompatibility complex (MHC) class I restricted cytotoxic T cell epitopes from EBNA4. It appears that the majority of antigens presented via the MHC I pathway are subject to ATPdependent ubiquitination and degradation by the proteasome. We have investigated the inf luence of the repeat on this process by comparing the degradation of EBNA1, EBNA4, and Gly-Ala containing EBNA4 chimeras in a cell-free system. EBNA4 was efficiently degraded in an ATP͞ubiquitin͞ proteasome-dependent fashion whereas EBNA1 was resistant to degradation. Processing of EBNA1 was restored by deletion of the Gly-Ala domain whereas insertion of Gly-Ala repeats of various lengths and in different positions prevented the degradation of EBNA4 without appreciable effect on ubiquitination. Inhibition was also achieved by insertion of a Pro-Ala coding sequence. The results suggest that the repeat may affect MHC I restricted responses by inhibiting antigen processing via the ubiquitin͞proteasome pathway. The presence of regularly interspersed Ala residues appears to be important for the effect.
IFN-gamma regulates the immunogenicity of target cells by increasing their expression of HLA class I molecules. This facilitates the T cell receptor-mediated recognition by CD8(+) T cells but decreases target cell sensitivity to lysis by NK cells due to engagement of inhibitory NK receptors. In this study, short-term tumor cell lines from patients with advanced ovarian carcinomas were established. We demonstrate the paradoxical finding that IFN-gamma treatment of these short-term ovarian carcinoma cell lines (OVACs) resulted in resistance of tumor cells to lysis by peptide- and allospecific CD8(+) T cells. Blocking experiments revealed that this phenomenon was dependent on enhanced inhibitory signalling via CD94/NKG2A receptors expressed on the effector cells. This was associated with increased expression of HLA-E mRNA and HLA-G at the protein level in IFN-gamma-treated OVACs. Furthermore, pulsing of untreated OVACs with the leader sequence peptide of HLA-G protected these cells from lysis by CTLs, thus mimicking the inhibitory effect of IFN-gamma. This study provides evidence that CD94/NKG2A receptors play an important role in regulating T cell activity against tumors and shows that IFN-gamma modulation of target cells may shift the balance of triggering and inhibitory signals to T cells, turning off their cytolytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.