The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.
We have studied the possible correlation between nuclear glutathione distribution and the progression of the cell cycle. The former was studied by confocal microscopy using 5-chloromethyl fluorescein diacetate and the latter by flow cytometry and protein expression of Id2 and p107. In proliferating cells, when 41% of them were in the S؉G 2 /M phase of the cell cycle GSH was located mainly in the nucleus. When cells reached confluence (G 0 /G 1 ) GSH was localized in the cytoplasm with a perinuclear distribution. The nucleus/cytoplasm fluorescence ratio for GSH reached a maximal mean value of 4.2 ؎ 0.8 at 6 h after cell plating. A ratio higher than 2 was maintained during exponential cell growth. In the G 0 /G 1 phase of the cell cycle, the nucleus/cytoplasm GSH ratio decreased to values close to 1. We report here that cells concentrate GSH in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and that GSH redistributes uniformly between the nucleus and the cytoplasm when cells reach confluence.Glutathione (GSH) is the most abundant non-protein thiol in mammalian cells and performs many physiological functions (1). We have reported that cellular glutathione decreases in apoptosis (2).Although the role of nuclear GSH in the synthesis of DNA (3) and in protection against oxidative damage or ionizing radiation (4) is well established, little is known about the concentration of GSH in the nucleus and its regulation. This is due to two main factors. The first is methodological: it is impossible to determine the nuclear concentration of GSH using standard cell fractionation and analytical approaches (for a review see Söderdahl et al. (5). In view of this problem, we used confocal microscopy.The second factor is that most, if not all, of the reports share the common view of nuclear GSH distribution in a static situation. Cells are usually studied under steady state conditions i.e. when they are confluent (G 0 /G 1 phase of the cell cycle). The nucleus changes dramatically during the different phases of the cell cycle. Thus, studies addressed to determining the nuclear GSH distribution must take cell cycle physiology into account. To our knowledge there is a lack of information about the cellular distribution of glutathione during the different phases of the cell cycle and the possible correlation between cellular growth and nuclear GSH levels. We report here that GSH concentrates in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and it redistributes uniformly between nucleus and cytoplasm when cells reach confluence. Nuclear Bcl-2 may be responsible for this change, as its expression changes in parallel with glutathione levels in nuclei. EXPERIMENTAL PROCEDURES Cell Culture3T3 fibroblasts were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and antibiotics (25 units/ml penicillin, 25 g/ml streptomycin, and 0.3 g/ml amphotericin B) in 5% CO 2 in air at 37°C in 25 or 75 cm 2 f...
SUMMARYCellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G 1 phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.