We demonstrated two important findings; that mobile phones caused oxidative damage biochemically by increasing the levels of MDA, carbonyl groups, XO activity and decreasing CAT activity; and that treatment with the melatonin significantly prevented oxidative damage in the brain.
Accumulation of hydrophobic bile acids (BAs) during cholestasis plays an important role in apoptosis initiation as well as oxidative stress increase in liver cells. Ursodeoxycholic acid (UDCA) acts as a protector in BA-induced cell injury.The aim of the study was to evaluate the effect of UDCA on oxidative stress level and DNase I and II activity caused by liver injury in bile duct ligation (BDL) rats.Wistar rats were divided in four groups: group 1, control (sham-operated); group 2, sham-operated and injected with UDCA (30 mg/kg); group 3,animals with BDL; and group 4,UDCA-treatedcholestatic rats. Animals were sacrificed after 9 days. Malondialdehyde (MDA; lipid peroxidation end-product) level and protein-molecule oxidative modification (carbonyl group content) significantly increased in BDL rat liver. Catalase (CAT) activity in liver tissue was found to be decreased in BDL rats. In addition, xanthine oxidase (XO) activity, which is thought to be one of the key enzymes producing reactive oxygen species, was found to be increased in the cholestatic group. The apoptotic effect in cholestasis was probably triggered by the increased activation of DNase I and II. The protective effect of UDCA on liver tissue damage in BDL rats, in comparison to cholestatic liver, were 1) decrease of MDA levels, 2) increased CAT activity, 3) reduced XO activity, and 4) effect on terminal apoptotic reaction, shown as a decrease in DNase I and II activity.Therefore, UDCA may be useful in the preservation of liver function in cholestasis treatment.
Glucocorticoid hormones (GC) are essential in all aspects of human health and disease. Their anti-inflammatory and immunosuppressive properties are reasons for therapeutic application in several diseases. GC suppress immune activation and uncontrolled overproduction and release of cytokines. GC inhibit the release of pro-inflammatory cytokines and stimulate the production of anti-inflammatory cytokines. Investigation of GC's mechanism of action, suggested that polyamines (PA) may act as mediators or messengers of their effects. Beside glucocorticoids, spermine (Spm) is one of endogenous inhibitors of cytokine production. There are many similarities in the metabolic actions of GC and PA. The major mechanism of GC effects involves the regulation of gene expression. PA are essential for maintaining higher order organization of chromatin in vivo. Spermidine and Spm stabilize chromatin and nuclear enzymes, due to their ability to form complexes with negatively charged groups on DNA, RNA and proteins. Also, there is an increasing body of evidence that GC and PA change the chromatin structure especially through acetylation and deacetylation of histones. GC display potent immunomodulatory activities, including the ability to induce T and B lymphocyte apoptosis, mediated via production of reactive oxygen species (ROS) in the mitochondrial pathway. The by-products of PA catabolic pathways (hydrogen peroxide, amino aldehydes, acrolein) produce ROS, well-known cytotoxic agents involved in programmed cell death (PCD) or apoptosis. This review is an attempt in the better understanding of relation between GC and PA, naturally occurring compounds of all eukaryotic cells, anti-inflammatory and apoptotic agents in physiological and pathological conditions connected to oxidative stress or PCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.