The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b + F4/80 + monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4 and CD8 T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis.
It is generally accepted within the education community that active learning is superior to traditional lecturing alone. Many science educators, however, are reluctant to give up classroom time for activities because they fear that they will not have time to cover as much content. Classroom flipping has been gaining momentum in higher education as one way to engage students in the classroom while still exposing students to the same volume of course content. The activity presented here demonstrates how flipping one lecture period can be used in conjunction with an engaging in-class activity to teach a concept that is often difficult for students to learn through lecture alone. Specifically, we asked students to view a lecture video on bacterial protein translation before coming to class. We then used the classroom period to conduct a hands-on activity that allowed students to interact with magnetic pieces representing the components of protein translation to generate a protein from a given piece of DNA. Survey data showed that students liked the flipped classroom format associated with this activity, but they would not want every class flipped, and they perceived that the hands-on protein translation activity helped them to learn the material. Preliminary summative assessment data showed that this activity may have been useful in helping students to achieve the fundamental learning outcome that students will be able to translate a protein from a given piece of bacterial DNA.
Recording lectures using video lecture capture software and making them available for students to watch anytime, from anywhere, has become a common practice in many universities across many disciplines. The software has become increasingly easy to use and is commonly provided and maintained by higher education institutions. Several studies have reported that students use lecture capture to enhance their learning and study for assessments, as well as to catch up on material they miss when they cannot attend class due to extenuating circumstances. Furthermore, students with disabilities and students from non-English Speaking Backgrounds (NESB) may benefit from being able to watch the video lecture captures at their own pace. Yet, the effect of this technology on class attendance remains a controversial topic and largely unexplored in undergraduate microbiology education. Here, we show that when video lecture captures were available in our large enrollment general microbiology courses, attendance did not decrease. In fact, the majority of students reported that having the videos available did not encourage them to skip class, but rather they used them as a study tool. When we surveyed NESB students and nontraditional students about their attitudes toward this technology, they found it helpful for their learning and for keeping up with the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.