Gut microbiota alterations are closely associated with immune dysfunction in HIV-1 patients, and these changes persist during short-term ART. Our data implicate that re-shaping the microbiota may be an adjuvant therapy in patients commencing successful ART.
Mucosa-associated invariant T (MAIT) cells represent a large innate-like evolutionarily conserved antimicrobial T-cell subset in humans. MAIT cells recognize microbial riboflavin metabolites from a range of microbes presented by MR1 molecules. MAIT cells are impaired in several chronic diseases including HIV-1 infection, where they show signs of exhaustion and decline numerically. Here, we examined the broader effector functions of MAIT cells in this context and strategies to rescue their functions. Residual MAIT cells from HIV-infected patients displayed aberrant baseline levels of cytolytic proteins, and failed to mobilize cytolytic molecules in response to bacterial antigen. In particular, the induction of granzyme B (GrzB) expression was profoundly defective. The functionally impaired MAIT cell population exhibited abnormal T-bet and Eomes expression patterns that correlated with the deficiency in cytotoxic capacity and cytokine production. Effective antiretroviral therapy (ART) did not fully restore these aberrations. Interestingly, IL-7 was capable of arming resting MAIT cells from healthy donors into cytotoxic GrzB+ effector T cells capable of killing bacteria-infected cells and producing high levels of pro-inflammatory cytokines in an MR1-dependent fashion. Furthermore, IL-7 treatment enhanced the sensitivity of MAIT cells to detect low levels of bacteria. In HIV-infected patients, plasma IL-7 levels were positively correlated with MAIT cell numbers and function, and IL-7 treatment in vitro significantly restored MAIT cell effector functions even in the absence of ART. These results indicate that the cytolytic capacity in MAIT cells is severely defective in HIV-1 infected patients, and that the broad-based functional defect in these cells is associated with deficiency in critical transcription factors. Furthermore, IL-7 induces the arming of effector functions and enhances the sensitivity of MAIT cells, and may be considered in immunotherapeutic approaches to restore MAIT cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.