This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA‐ICP‐MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.
The clumped isotopic composition of carbonate‐derived CO2 (denoted Δ47) is a function of carbonate formation temperature and in natural samples can act as a recorder of paleoclimate, burial, or diagenetic conditions. The absolute abundance of heavy isotopes in the universal standards VPDB and VSMOW (defined by four parameters: R13VPDB, R17VSMOW, R18VSMOW, and λ) impact calculated Δ47 values. Here, we investigate whether use of updated and more accurate values for these parameters can remove observed interlaboratory differences in the measured T‐Δ47 relationship. Using the updated parameters, we reprocess 14 published calibration data sets measured in 11 different laboratories, representing many mineralogies, bulk compositions, sample types, reaction temperatures, and sample preparation and analysis methods. Exploiting this large composite data set (n = 1,253 sample replicates), we investigate the possibility for a “universal” clumped isotope calibration. We find that applying updated parameters improves the T‐Δ47 relationship (reduces residuals) within most labs and improves overall agreement but does not eliminate all interlaboratory differences. We reaffirm earlier findings that different mineralogies do not require different calibration equations and that cleaning procedures, method of pressure baseline correction, and mass spectrometer type do not affect interlaboratory agreement. We also present new estimates of the temperature dependence of the acid digestion fractionation for Δ47 (Δ*25‐X), based on combining reprocessed data from four studies, and new theoretical equilibrium values to be used in calculation of the empirical transfer function. Overall, we have ruled out a number of possible causes of interlaboratory disagreement in the T‐Δ47 relationship, but many more remain to be investigated.
Surprisingly, there is little evidence for the involvement of North Atlantic N-MORB source mantle, as would be expected from the interaction of the Iceland plume and the surrounding asthenosphere in form of plume-ridge interaction. The preferential sampling of the enriched and depleted components in the off-rift and main rift systems, respectively, can be explained by differences in the geometry of the melting regions. In the off-rift areas, melting columns are truncated deeper and thus are shorter, which leads to preferential melting of the enriched component, as this starts melting deeper than the depleted component. In contrast, melting proceeds to shallower depths beneath the main rifts. The longer melting columns also produce significant amounts of melt from the more refractory (lower crustal/lithospheric) component.
The exclusive use of carbonate reference materials is a robust method for the standardization of clumped isotope measurements • Measurements using different acid temperatures, designs of preparation lines, and mass spectrometers are statistically indistinguishable • We propose new consensus values for a set of 7 carbonate reference materials and updated guidelines to report clumped isotope measurements
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.