Aim To evaluate the anti‐noroviral efficacy of PURELL® surface sanitizer and disinfectant spray (PSS, an alcohol‐based formulation) using human norovirus GII.4 Sydney [hNoV, by RT‐qPCR and human intestinal enteroid (HIE) infectivity assay] and its cultivable surrogate, Tulane virus (TuV, infectivity assay), compared to sodium hypochlorite (NaOCl) solutions. Methods and Results PSS efficacy was evaluated in suspension and on surfaces [stainless steel (SS)] using ASTM methods. Results were expressed as log10 reduction (LR) of genome equivalent copy number (GEC, for hNoV, assayed by RT‐qPCR) and plaque forming units (PFU, for TuV, per infectivity assay). In suspension, PSS achieved a 2.9 ± 0.04 LR hNoV GEC irrespective of contact time (30 or 60 s) and soil load (2.5% or 5%). Under all treatment conditions, infectious TuV could not be recovered following exposure to PSS, corresponding to the assay limit of detection (3.1–5.2 log10 PFU). Infectious hNoV could not be detected in the HIE model after exposure to PSS. On SS and 2.5% soil, PSS produced a 3.1 ± 0.1 LR hNoV GEC, comparable to 500 ppm NaOCl for 60 s. With 5.0% soil, PSS produced a 2.5 ± 0.2 LR hNoV GEC, which was similar to 1000–5000 ppm NaOCl for 60 s. Conclusions PSS showed high anti‐hNoV efficacy by RT‐qPCR and in in vitro (TuV) and ex vivo (HIE) infectivity assays and performed similar to 1000–5000 ppm NaOCl for a 60‐s contact time on SS with added soil. Significance and Impact of Study hNoV remains a significant cause of morbidity globally, partly due to its resistance to numerous surface disinfectants. RT‐qPCR results from this study indicate PSS efficacy against hNoV is comparable to NaOCl efficacy. Infectivity assays leveraging TuV and the HIE model for hNoV support and confirm loss of virus infectivity. Collectively, these results indicate the product’s ability to inactivate hNoV quickly, which could be beneficial in settings having elevated risk for hNoV transmission.
Human norovirus is the leading cause of foodborne illness globally. One of the challenges in detecting noroviruses is the identification of a completely broadly reactive ligand; however, all detection ligands generated to date target the viral capsid, the outermost of which is the most variable region of the genome. The VPg is a protein covalently linked to the viral genome that is necessary for replication but hitherto remains underexplored as a target for detection or therapeutics. The purpose of this work was to generate nucleic acid aptamers against human norovirus (Norwalk) and cultivable surrogate (Tulane) VPgs for future use in detection and therapeutics. Eight rounds of positive-SELEX and two rounds of counter-SELEX were performed. Five and eight unique aptamer sequences were identified for Norwalk and Tulane VPg, respectively, all of which were predicted to be stable (∆G < −5.0) and one of which occurred in both pools. All candidates displayed binding to both Tulane and Norwalk VPg (positive:negative > 5.0), and all but two of the candidates displayed very strong binding (positive:negative > 10.0), significantly higher than binding to the negative control protein (p < 0.05). Overall, this work reports a number of aptamer candidates found to be broadly reactive and specific for in vitro-expressed VPgs across genus that could be used for future application in detection or therapeutics. Future work characterizing binding of the aptamer candidates against native VPgs and in therapeutic applications is needed to further evaluate their application.
Human noroviruses (hNoVs) are the leading cause of acute gastroenteritis and food-borne disease worldwide. Noroviruses are difficult to inactivate, being recalcitrant to sanitizers and disinfectants commonly used by the retail food sector.
It is estimated that one in five cases of foodborne illnesses is acquired in the home. However, how pathogens move around a kitchen environment when consumers are preparing food is not well characterized. The purpose of this study was to determine the prevalence and degree of cross-contamination across a variety of kitchen surfaces during a consumer meal preparation event. Consumers (n=371) prepared a meal consisting of turkey patties containing the bacteriophage MS2 as a tracer organism and a ready-to-eat lettuce salad. Half were shown a video on proper thermometer use before the trial. After meal preparation, environmental sampling and detection were performed to assess cross-contamination with MS2. For most surfaces, positivity did not exceed 20%, with the exception of spice containers, for which 48% of the samples showed evidence of MS2 cross-contamination. Spice containers also had the highest MS2 concentrations, at a mean exceeding 6 log 10 viral genome equivalent copies (GEC) per surface. The high level of MS2 on spice containers drove the significant differences between surfaces, suggesting the significance of spice containers as a vehicle for cross-contamination, despite the absence of previous reports to this effect. The thermometer safety intervention did not affect cross-contamination. The efficiency of MS2 transfer, when expressed as a percentage, was relatively low, ranging from an average of 0.002 to 0.07%. Quantitative risk assessment work using these data would aid in further understanding the significance of cross-contamination frequency and efficiency. Overall, these data will help create more targeted consumer messaging to better influence consumer cross-contamination behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.