We approach the simultaneous localization and mapping problem by using an ultrasound sensor and wheel encoders on a mobile robot. The measurements are modeled to yield a conditionally linear model for all the map states. Moreover, we implement a Rao-Blackwellized particle smoother (RBPS) for jointly estimating the position of the robot and the map. The method is applied and successfully verified by experiments on a small Lego robot where ground truth was obtained by the use of a VICON real-time positioning system. The results show that the RBPS contributes with more robust estimates at the cost of computational complexity and memory usage.
Abstract-In the RUNES project a disaster relief tunnel scenario is being developed in which mobile robots are used to restore the radio network connectivity in a stationary sensor network. A component-based software development approach has been adopted. Two components are described in this paper. A localization component that uses ultrasound and dead reckoning to decide the robot positions and a collision avoidance component that ensures that the robots do not collide with each other.
Abstract:The simultaneous localization and mapping problem is approached by using an ultrasound sensor and wheel encoders. To account for the low precision inherent in ultrasound sensors, the occupancy grid notion is extended. The extension takes into consideration with which angle the sensor is pointing, to compensate for the issue that an object is not necessarily detectable from all positions due to deficiencies in how ultrasonic range sensors work. A mixed linear/nonlinear model is derived for future use in Rao-Blackwellized particle smoothing.
Particle methods such as the particle filter and particle smoothers have proven very useful for solving challenging nonlinear estimation problems in a wide variety of fields during the last decade. However, there are still very few existing tools available to support and assist researchers and engineers in applying the vast number of methods in this field to their own problems. This paper identifies the common operations between the methods and describes a software framework utilizing this information to provide a flexible and extensible foundation which can be used to solve a large variety of problems in this domain, thereby allowing code reuse to reduce the implementation burden and lowering the barrier of entry for applying this exciting field of methods. The software implementation presented in this paper is freely available and permissively licensed under the GNU Lesser General Public License, and runs on a large number of hardware and software platforms, making it usable for a large variety of scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.