Multiple Sclerosis (MS) is an autoimmune neurological disease characterized by inflammation of the brain and spinal cord. Relapsing-Remitting MS is characterized by acute attacks followed by remission. Treatment is aimed at halting these attacks; therapy may last for months to years. Because MS disproportionately affects females and commonly begins during the childbearing years, clinicians treat pregnant or nursing MS patients. The intent of this review is to perform an in-depth analysis into the safety of drugs used in breastfeeding women with MS. This paper is composed of several drugs used in the treatment of MS and current research regarding their safety in breastfeeding including immunomodulators, immunosuppressants, monoclonal antibodies, corticosteroids, and drugs used for symptomatic treatment. Typically, some medications are large polar molecules which often do not pass into the milk in clinically relevant amounts. For this reason, interferon beta is likely safe for the infant when given to a breastfeeding mother. However, other drugs with particularly dangerous side effects may not be recommended. While treatment options are available and some data from clinical studies does exist, there continues to be a need for investigation and ongoing review of the medications used in breastfeeding mothers.
Diabetes mellitus (DBM) reduces immunological activity and increases susceptibility to various infections, including tuberculosis. Human alveolar macrophage (hAM) functions are altered in DBM.To mimic hyperglycemic conditions in the lung alveolus, we co-cultured a hAM cell line (Daisy cell line) with human umbilical vein endothelial cells (HUVEC) for 48 hours in the presence of culture media alone, normal glucose (5 mM), and high glucose (22 mM). Using flow cytometry, immunophenotype characterization included cell surface markers CD 11c, CD14, CD16, CD86, CD163, CD169, CD206, CX3CR-1, CSF-1R, and MMP9. Phagocytic function was measure by immunofluorescence microscopy at 24 hours after inoculation of cells with GFP-expressing Mycobacterium smegmatis.Direct exposure of AMs to high glucose and exposure in the co-culture system yields different results for the same phenotypic markers. Matrix metalloproteinase-9 (MMP9) expression was increased under both conditions. CD169 and CX3CR1 expression were decreased when AMs were exposed directly to high glucose but increased under co-culture.Immunofluorescence assay revealed that phagocytosis decreased in AMs directly exposed to an increase of glucose from 2.5 mM to normal glucose (5 mM), yet AMs under co-culture did not show decreased phagocytosis until concentrations were raised to 25 mM. Alteration in the expression of certain receptors may contribute to defective sentinel function of AMs, promoting s susceptibility to tuberculosis in a diabetic host. Variability in cell surface marker expression under direct glucose exposure compared to exposure via co-culture reveals that cell signaling between endothelial cells and AMs may play a crucial role in the phenotypic expression of AMs.
PurposeThere is currently no true macrophage cell line and in vitro experiments requiring these cells currently require mitogenic stimulation of a macrophage precursor cell line (THP-1) or ex vivo maturation of circulating primary monocytes. In this study, we characterise a human macrophage cell line, derived from THP-1 cells, and compare its phenotype to the THP-1 cells.MethodsTHP-1 cells with and without mitogenic stimulation were compared to the newly derived macrophage-like cell line (Daisy) using microscopy, flow cytometry, phagocytosis assays, antigen binding assays and gene microarrays.ResultsWe show that the cell line grows predominantly in an adherent monolayer. A panel of antibodies were chosen to investigate the cell surface phenotype of these cells using flow cytometry. Daisy cells expressed more CD11c, CD80, CD163, CD169 and CD206, but less CD14 and CD11b compared with mitogen-stimulated THP-1 cells. Unlike stimulated THP-1 cells which were barely able to bind immune complexes, Daisy cells showed large amounts of immune complex binding. Finally, although not statistically significant, the phagocytic ability of Daisy cells was greater than mitogen-stimulated THP-1 cells, suggesting that the cell line is more similar to mature macrophages.ConclusionsThe observed phenotype suggests that Daisy cells are a good model of human macrophages with a phenotype similar to human alveolar macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.