Compassion is a key motivator of altruistic behavior, but little is known about individuals’ capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (i) short-term compassion training increases altruistic behavior, and (ii) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy young adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, greater altruistic behavior after compassion training was associated with altered activation in regions implicated in social cognition and emotion regulation, including the inferior parietal cortex, dorsolateral prefrontal cortex (DLPFC), and DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training, where greater altruistic behavior may emerge from increased engagement in neural systems implicated in understanding the suffering of others, executive and emotional control, and reward processing.
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.