The pursuit of a clean and healthy environment has stimulated much effort in the development of technologies for the utilization of hydrogen-based energy. A critical issue is the need for practical systems for hydrogen storage, a problem that remains unresolved after several decades of exploration. In this context, the possibility of storing hydrogen in advanced carbon materials has generated considerable interest. But confirmation and a mechanistic understanding of the hydrogen-storage capabilities of these materials still require much work. Our previously published work on hydrogen uptake by alkali-doped carbon nanotubes cannot be reproduced by others. It was realized by us and also demonstrated by Pinkerton et al. that most of the weight gain was due to moisture, which the alkali oxide picked up from the atmosphere. Here we describe a different material system, lithium nitride, which shows potential as a hydrogen storage medium. Lithium nitride is usually employed as an electrode, or as a starting material for the synthesis of binary or ternary nitrides. Using a variety of techniques, we demonstrate that this compound can also reversibly take up large amounts of hydrogen. Although the temperature required to release the hydrogen at usable pressures is too high for practical application of the present material, we suggest that more investigations are needed, as the metal-N-H system could prove to be a promising route to reversible hydrogen storage.
Pure lithium amide (LiNH2) decomposes to lithium imide and ammonia at temperatures above 300 °C. Lithium
hydride, on the other hand, liberates hydrogen at temperatures above 550 °C. By thoroughly mixing these
two substances and conducting temperature-programmed desorption (TPD), we noticed that hydrogen was
produced at temperatures around 150 °C. Combined thermogravimetric (TG), X-ray diffraction (XRD), and
infrared (IR) analysis revealed that lithium amide would react with lithium hydride and convert to hydrogen
and lithium imide (or Li-rich imide). The reaction mechanism was investigated by isotopic exchange.
TiO(2) nanotubes can reproducibly store up to approximately 2 wt % H(2) at room temperature and 6 MPa. However, only about 75% of this stored hydrogen can be released when the hydrogen pressure is lowered to ambient conditions, suggesting that both physisorption and chemisorption are responsible for the hydrogen uptake. FTIR spectroscopy, temperature-programmed desorption (TPD), and pressure-composition (P-C) isotherms suggest that 75% of the H(2) is physisorbed and can be reversibly released upon pressure reduction. Approximately 13% is weakly chemisorbed and can be released at 70 degrees C as H(2), and approximately 12% is bonded to oxide ions and released only at temperatures above 120 degrees C as H(2)O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.