BackgroundVariants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules.ResultsTo assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs.ConclusionsTogether, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides.
Exosomes are small (30–150 nm) vesicles containing unique RNA and protein cargo, secreted by all cell types in culture. They are also found in abundance in body fluids including blood, saliva, and urine. At the moment, the mechanism of exosome formation, the makeup of the cargo, biological pathways, and resulting functions are incompletely understood. One of their most intriguing roles is intercellular communication—exosomes function as the messengers, delivering various effector or signaling macromolecules between specific cells. There is an exponentially growing need to dissect structure and the function of exosomes and utilize them for development of minimally invasive diagnostics and therapeutics. Critical to further our understanding of exosomes is the development of reagents, tools, and protocols for their isolation, characterization, and analysis of their RNA and protein contents. Here we describe a complete exosome workflow solution, starting from fast and efficient extraction of exosomes from cell culture media and serum to isolation of RNA followed by characterization of exosomal RNA content using qRT-PCR and next-generation sequencing techniques. Effectiveness of this workflow is exemplified by analysis of the RNA content of exosomes derived from HeLa cell culture media and human serum, using Ion Torrent PGM as a sequencing platform.
Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.
An epidemic of an acute respiratory syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in Wuhan, China, now known as coronavirus disease 2019 (COVID‐19), beginning in December 2019, has attracted an intense amount of attention worldwide. As the natural history and variety of clinical presentations of this disease unfolds, extrapulmonary symptoms of COVID‐19 have emerged, especially in the digestive system. While the respiratory mode of transmission is well known and is probably the principal mode of transmission of this disease, a possibility of the fecal‐oral route of transmission has also emerged in various case series and clinical scenarios. In this review article, we summarize four different aspects in published studies to date: (a) gastrointestinal manifestations of COVID‐19; (b) microbiological and virological investigations; (c) the role of fecal‐oral transmission; and (d) prevention and control of SARS‐CoV‐2 infection in the digestive endoscopy room. A timely understanding of the relationship between the disease and the digestive system and implementing effective preventive measures are of great importance for a favorable outcome of the disease and can help climnicians to mitigate further transmission by taking appropriate measures.
Background: Information about the clinical characteristics and mortality of patients with coronavirus disease 2019 at different ages is limited. Results: The older group had more patients with dyspnea and fewer patients with fever and muscle pain. Older patients had more underlying diseases, secondary infection, myocardial injury, renal dysfunction, coagulation dysfunction, and immune dysfunction on admission. More older patients received immunoglobulin therapy and mechanical ventilation. The proportions of patients with multiple organ injuries, critically ill patients and death increased significantly with age. The older groups had higher cumulative death risk than the younger group. Hypertension, cerebrovascular disease, comorbidities, acute cardiac injury, shock and complications are independent predictors of death. Conclusions: The symptoms of the elderly patients were more atypical, with more comorbidities, secondary infection, organ injuries, immune dysfunction and a higher risk of critical illness. Older age was an important risk factor for mortality. Methods: 1000 patients diagnosed with coronavirus disease 2019 from January 1, 2020 to February 14, 2020 were enrolled. According to age, patients were divided into group 1 (<60 years old), group 2 (60-74 years old) and group 3 (≥75 years old). The clinical symptoms, first laboratory results, CT findings, organ injuries, disease severity and mortality were analyzed. www.aging-us.com 10071 AGING acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still increasing. The numbers of infected patients and deaths both exceeded the respective figures associated with the outbreaks of severe acute respiratory syndrome (SARS) in 2003 [3] and Middle East respiratory syndrome (MERS) in 2015 [4]. Compared to the mortality of SARS (10%) and MERS (35%), COVID-19 has a lower fatality rate of 2.3% [5-7]. However, the rapidly increasing number of cases and increasing evidence of human-to-human transmission suggest that SARS-CoV-2 is more contagious than SARS-CoV and MERS-CoV [8, 9].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.